LESSON PLAN

Name of the Subject: SPECIAL FUNCTIONS AND COMPLEX ANALYSIS(14BT3BS02) Class & Semester: II B.Tech –I semester - E.C.E, E.E.E. & E.I.E Name of the faculty Member:

S. No.	Торіс	No. of periods	Book(s) followed	Topics for self study		
UNIT-I: SPECIAL FUNCTIONS						
	Beta and Gamma functions – properties	2	T1			
	Relationship between Beta and Gamma	2	T1	T 1 1 1 00		
	functions and problems.	2		Legendre's differential		
	Evaluation of improper integrals using	2	T1	equation, generating		
	beta and gamma functions.	3		- relations and		
	Bessel function - generating function	2	T1			
	(without proof) and recurrence relations	2		orthogonality.		
	Orthogonality	1	T1			
Total periods required:				10		
UNIT-II: ANALYTIC FUNCTIONS						
	Function of a complex variable.	2	T1			
	Limits and continuity of functions.					
	Differentiability - Analyticity	1	T1			
	Cauchy Riemann equations (both	3	T1			
	Cartesian and polar)					
	Conjugate and harmonic conjugate	2	T1			
	functions.					
	Milne Thompson method.	1	T1			
	Potential functions.	1	T1			
Total p	periods required:			10		
UNIT-III: COMPLEX INTEGRATION AND POWER SERIES						
	Line integral - evaluation of line integrals	2	T1			
	along curves and closed contours					
	Cauchy's integral theorem (without	1	T1			
	proof) – problems					
	Cauchy's integral formula and derivatives	1	T1			
	of analytic functions.					
	Generalized integral formula- evaluation	2	T1	Cauchy's inequality		
	of integrals.					
	Taylor's theorem (without proof) - power	1	T1			
	series expansion of complex functions.					
	Laurent's theorem (without proof) -	1	T1			
	power series expansion of complex					
	functions.			2		
Total periods required: 8						
	UNIT-IV: RESIDUE THEO	KEM – AP	PLICATIO	INS		
	zeros and types of singularities	1	11			

Residues – evaluation of residues pole of order m and pole at infinity	1	T1		
Residue theorem- evaluation of integrals	1	T1		
using residue theorem				
Evaluation of improper and real		T1	Rouche's theorem –	
integrals of the type: $\int_{0}^{2\pi} f(\cos\theta, \sin\theta) d\theta$	2		Applications. Fundamental theorem of Algebra.	
Evaluation of $\int_{-\infty}^{\infty} f(x) dx$	2	T1		
Evaluation of $\int_{-\infty}^{\infty} e^{imx} f(x) dx$	2	T1		
Total periods required:	09			
UNIT-V: CONFORMAL MAPPING				
Conformal mappings	1	T1		
definitions and examples				
Mappings defined by	3	T1		
$w = e^z$, $\log z$, z^2 , $\sin z$, $\cos z$.				
Standard transformations :	1	T1		
Translation, rotation, inversion.				
Bilinear transformation - properties -	1	T1		
fixed points - cross ratio				
Invariance of circles under bilinear	1	T1		
transformation				
Determination of bilinear transformation	1	T1		
using three given points.				
Total periods required:			8	
Grand total periods required:	45			

TEXT BOOKS:

T1 . T.K.V. Iyenger, B. Krishna Gandhi, etal, **Text book of Engineering Mathematics**, **Vol- III**, S. Chand & Company, 8/e., 2011

REFERENCE BOOKS:

- R1. Grewal, B.S, Higher Engineering Mathematics, Khanna Publishers, Delhi, 42/e,2012.
- R2. Shahnaz Bathul, Special Functions and Complex Variables, PHI Learning, 2 /e, 2010