SREE VIDYANIKETHAN ENGINEERING COLLEGE

(Autonomous)

Sree Sainath Nagar, A. Rangampet-517 102

Department of Electronics and communication Engineering

<u>Lesson Plan</u>

Name of the Subject: Advanced Digital Signal Processing, (14MT15706) Class & Semester: M. Tech.– I Semester, VLSI (Elective-I) & CMS Name of the faculty Member: Ms D Leela Rani

S.	Торіс	No. of	Book(s)	Topics for
No.		periods	followed	self study
	UNIT – I: MULTIRATE FILTE	R BANKS	1	D :
1.	Decimation	1	T1	Discrete Wavelet
2.	Interpolation	1	T1	Transform
3.	Sampling rate conversion by a rational factor I/D	1	T1	
4.	Multistage Implementation of sampling rate conversion.	1	T1	
5.	Digital Filter Banks : Two-Channel Quadrature-Mirror Filter Bank,	1	T1	
6.	Elimination of aliasing, condition for Perfect Reconstruction,	2	T1	
7.	Polyphase form of QMF bank,	2	T1	
8.	Linear phase FIR QMF bank, IIR QMF bank,	1	T1	
9.	Perfect Reconstruction Two-Channel FIR QMF Bank	2	T1	
	Total periods required:	12		
	UNIT II: NON-PARAMETRIC METHODS OF POWI	ER SPECT	FRAL EST	IMATION
10.	Estimation of spectra from finite duration observation of signals	2	T1	Correlation, Power
11.	Non-Parametric Methods: Bartlett, Welch methods.	2	T1	Spectrum and its properties
12.	Blackmann & Tukey methods.	2	T1	its properties
13.	Performance Characteristics of Nonparametric Power Spectrum Estimators	2	T1	
14.	Computational Requirements of Nonparametric Power Spectrum Estimates	2	T1	
	Total periods required:	10		
	UNIT -III: PARAMETRIC METHODS OF POWER	SPECTR A	AL ESTIMA	TION
15.	Autocorrelation & Its Properties	2	T1	Stationary, Non-Stationary
16.	Relation between auto correlation and model parameters	2	T1	&Wide sense
17.	Yule-Walker & Burg Methods	2	T1	stationary
18.	MA model for power spectrum estimation	2	T1	processes
19.	ARMA model for power spectrum estimation	2	T1	-
	Total periods required:	10		
	UNIT – IV: DSP ALGORITHMS			
20.	Fast DFT algorithms based on Index mapping	2	T2	Composite FFT
21.	Sliding Discrete Fourier Transform	2	T2	
22.	DFT Computation Over a narrow Frequency Band	2	T2	
23.	Split Radix FFT	2	T2	

Department of Electronics and Communication Engineering

		•		1
24.	Linear filtering approach to Computation of DFT using	2	T2	
	Chirp Z-Transform			
	Total periods required:	12		
	UNIT – V: APPLICATIONS OF DIGITAL SI	GNAL PR	OCESSING	
25.	Digital cellular mobile telephony	1	R1	Subband coding of
26.	Adaptive telephone echo cancellation	1	R1	speech and
27.	High quality A/D conversion for digital Audio	2	R1	audio signals,
28.	Efficient D/A conversion in compact hi-fi systems	2	R1	spectral
29.	Acquisition of high quality data	1	R1	analysis of
30.	Multirate narrow band digital filtering	2	R1	random
31.	High resolution narrowband spectral analysis	2	R1	signals.
				C
				Research
				Topics:
				Methods to
				Minimize
				Finite Word
				Length Effect,
				Wavelets in
				Digital Filter
				Banks.
				Multirate
				signal
				Processing
	Total periods required:	11	·	· · · · · · ·
	Grand total periods required:	55		

T1. John G. Proakis, Dimitris G. Manolakis, *Digital signal processing, principles, Algorithms and applications,* Prentice Hall, 4th Edition, 2007.

T2. Sanjit K Mitra, "*Digital signal processing, A computer base approach*", McGraw-Hill Higher Education, 4th Edition, 2011.

REFERENCE BOOKS:

R1. Emmanuel C Ifeacher Barrie. W. Jervis, "DSP - A Practical Approach", Pearson Education, 2nd Edition, 2002.

R2. A.V. Oppenheim and R.W. Schaffer, "Discrete Time Signal Processing", PHI, 2nd Edition, 2006.

Signature of the faculty Member framing the syllabus

SREE VIDYANIKETHAN ENGINEERING COLLEGE

(Autonomous)

Sree Sainath Nagar, A. Rangampet-517 102

Department of Electronics and communication Engineering

Lesson Plan

Name of the Subject: Analog IC Design (14MT15701) Class & Semester: M. Tech. (VLSI) – I Semester Name of the faculty Member: T. Krishna Murthy

S.	Topic	No. of periods	Book(s) followed	Topics for self study
No.	UNIT	– I:		
1.	Basic MOS Device Physics: General Considerations, MOS I/V Characteristics	2	T1	Second-Order Effects and Choice of Device Models.
2.	Second-Order Effects	1		
3.	MOS Device Models	1	T1	
4.	Single Stage Amplifiers: Common-Source Stage	2	T1	
5.	Source follower, Common Gate Stage	2	T1	
6.	Cascode Stage	1	T1	
7.	Differential Amplifiers	3	T1	
8.	Current Mirrors	3	T1	
	Total periods required:	15		
	UNIT- II: Frequency Response and N	loise Chara	cteristics Of	Amplifiers
9.	Frequency Response-General Considerations	1	T1	Types of Noise, Representation of
10.	Common-Source Stage, Source follower	1	T1	Noise in Circuits and
11.	Common Gate Stage, Cascode Stage, Differential pair	2	T1	Noise Bandwidth.
12.	Noise- Statistical Characteristics of Noise	1	T1	
13.	Noise in Single Stage Amplifiers, Noise in Differential Pairs.	2	T1	
	Total periods required:	07		
	UNIT- III: Feedback Circuits a	and Operat	ional Ampli	fiers
		2	T1	Comparison of performance of
	Feedback Topologies	2	T1	Various and Common-
16.	Effect of Loading, Effect of Feedback on Noise	2	T1	Mode Feedback.
17.	Operational Amplifiers- General considerations	1	T1	
18.	One-stage Op Amps	1	T1	
19.	Two - stage Op Amps, Gain boosting	2	T1	
20.	Input range limitations, slew rate	1	T1	
21.	Power Supply Rejection, noise in Op Amps	1	T1	
	Total periods required:	12		
	UNIT-	- IV:		

Department of Electronics and Communication Engineering

22.	Stability and Frequency Compensation: General considerations, Multipole Systems	1	T1	General Consideration, Case Study in Bandgap References.
23.	Phase Margin, Frequency Compensation, Compensation of Two-Stage Op Amps	2	T1	
24.	Other Compensation Techniques	1	T1	
25.	81	1	T1	
	Supply-Independent Biasing			-
	Temperature-independent References	1	T1	
27.	PTAT Current Generation, Constant -	2	T1	
	Gm Biasing, Speed and Noise Issues.			
	Total periods required:	08		
	UNIT- V: Introduction To Sv	vitched–Caj	pacitor Circ	cuits
28.	General Considerations	1	T1	Research Topic-
29.	Sampling Switches	3	T1	Hybrid Mixed
30.	Switched-Capacitor Amplifiers	3	T1	Analog/Digital PLLs,
31.	Switched-Capacitor Integrator, Switched- Capacitors Common-Mode Feedback	2	T1	Reconfigurable Phase Arrays, CMOS Cognitive Radio
	Total periods required:	09		
	Grand Total periods required:	51		

T1: Behzad Razavi, "Design of Analog CMOS Integrated Circuit", Tata-McGraw-Hill, 2002.

REFERENCES:

R1: D.A.John & Ken Martin, "Analog Integrated Circuit Design", John Wiley, 1997.

R2: Philip Allen & Douglas Holberg, "CMOS Analog Circuit Design", Oxford University Press, 2002.

Signature of the faculty Member framing the syllabus

Department of Electronics and communication Engineering

<u>Lesson Plan</u>

Name of the Subject: Computational Techniques for Microelectronics (14MT15702) Class & Semester: M. Tech. (VLSI) – I Semester Name of the faculty Member: K.NEELIMA

S. No.	Торіс	No. of	Book(s) followed	Topics for self study
NO.	UNIT – I: BASIC COM			
1.	Linear systems and matrices – matrix	1	T1	Linear and Nonlinear
1.	formalities	1		mathematics
2.	condition of matrix systems	1	T1	
3.	Techniques for matrix solution	2	T1	
4.	Mixed boundary condition	2	T1	
5.	Nonlinear Systems – scalar equations	2	T1	
6.	Matrix equations	2		
7.	Approximation, interpolation, curve	2	T1	
7.	fitting	2		
8.	Numerical Integration	2	T1	
0.	Total periods required:	14		
	UNIT – II: COMPUTATIONAL		R APPLIC	ATIONS
9.	Finite difference techniques	1	T1	Partial Differential
10.	-	2	T1	Equations
11.	4	2	T1	1
12.		2	T1	
13.	Dynamic methods in applied mechanics	2	T1	
	Total periods required:	09		
	UNIT -III: ADVANCED CO	MPUTATI	ONAL TOO	DLS
14.	Method of characteristics	2	T1	Applications of partial
15.	Classification of partial Differential	2	T1	differential equations
	equations	2		
16.	Investigations in Engineering	2	T1	
17.	Finite volume methods – Direct Analysis	2	T1	
	Total periods required:	08		
	UNIT -IV: GRID GENERATIO			
18.		2	T2	Multi levels and
19.	0	2	T2	Domain decomposition
20.	errors and mesh Selection	2	T2	

21.	Refinement Algorithms	2	T2	
22.	Mesh Redistribution	2	T2	
23.	Moving Grids	2	T2	
	Total periods required:	10	•	
	UNIT -V: APPLICATIONS TO DEVI	CE AND P	ROCESS SI	MULATION
24.	Applications to device and process	2	Т3	Model Parameters
	simulation			design
25.	Layout algorithms	3	T3	Research Topics:
26.	Yield estimation algorithms	3	Т3	Time Series prediction
27.	Symbolic analysis and Synthesis of	3	Т3	to computational
	Analog ICs			NeuroScience
	Total periods required:	11	•	
	Grand total periods required:	52		

- T1: Herbert Koenig,"Modern Computational methods", CRC Press, 1988.
- T2: Graham F.carey, "Computational Grids: generations, adaptation & Solution Strategies", CRC Press, 1997.
- T3: Naveed A. Sherwani,"Algorithms for VLSI Physical Design Automation", Kluwer Academic Publishers, 1993.

REFERENCE BOOKS:

R1: L.Pallage, R.Rohrer And C.Visweswaraiah, "Electronic Circuit and System Simulation Methods", McGraw Hill, 1995.

Signature of the faculty Member framing the syllabus

Department of Electronics and communication Engineering

Lesson Plan

Name of the Subject: DIGITAL IC DESIGN (14MT15704) Class & Semester: M. Tech. (VLSI) – I Semester Name of the faculty Member: Mr. K.V.Rajendra Prasad

S.		No. of	Book(s)	Topics for self study
No.		periods	followed	
	UNIT – I: CMOS INVERTERS CHARA			
1.	Static and Dynamic characteristics	3	R3	CMOS Inverter
2.	Introduction to Static and Dynamic	1	T1	Operation, Pull-up and
	CMOS design			Pull Down Networks.
3.	Domino Logic	1	T1	
4.	NORA logic	1	T1	
5.	Combinational	1	T1	
6.	Sequential circuits	2	T1	
	Total periods required:	09	•	
	UNIT – II: LOGICAL EFFORT	S AND M	EMORY D	ESIGN
7.	Methods of Logical Effort for	2	R1	Logical Effort Problems on
0	transistor sizing		R1	
8.	Power consumption in CMOS Gates	1	K I	Complex Combinational
9.	Low power CMOS design	1	T1	Circuits.
10.	CMOS Memory design	1	T1	
11.	SRAM design	2	R1	
12.	DRAM design	2	R1	
	Total periods required:	09	•	
	UNIT -III: DESIGN METH	IODOLOG'	Y AND TOO	DLS
13.	Introduction	1	Т3	
14.	Structured Design Strategies	2	Т3	Programmable Logic,
15.	Design Methods	2	Т3	Gate Array ,Full Custom
16.	Design Flows	2	Т3	5
17.	Design Economics	1	Т3	Design .
18.	Data Sheets and Documentation	2	Т3	
	Total periods required:	10	·	
	UNIT – IV: LAYOUT	DESIGN	RULES	
19.	Need for Design Rules	1	T1	Rising and falling
20.	Mead Conway Design Rules for the Silicon Gate NMOS Process	2	T1	Delays of CMOS Design ,
21.		2	T1	Layout Design for
R				

22.	Simple Layout Examples.	1	T1	Complex Logic
23.	Sheet Resistance	1	T2	Circuits.
24.	Area Capacitance	1	T2	
25.	Wire Capacitance	1	T2	
26.	Drive Large Capacitive Load.	2	T2	
	Total periods required:	11		1
	UNIT – V: SUBSYSTEN	1 DESI GN	PROCESS	j
27.	General arrangement of 4-bit Arithmetic Processor	2	T2	Bus Arrangements in Processor
28.	Design of 4-bit shifter	1	T2	Architecture, Adder
29.	Design of ALU sub-system	1	T2	and Subtractor Design
30.	Implementing ALU functions with an adder	1	T2	using ALU. Research Topics: Low Power Digital IC
31.	Multipliers	5	T2	Design and High
32.	Modified Booth's algorithm.	1	T2	Speed Digital IC Design.
	Total periods required:	11	1	1
	Grand total periods required:	50		

- T1: Eugene D Fabricus, "Introduction to VLSI Design, "McGraw Hill International Edition, 1990.
- T2: Kamran Eshranghian, Douglas A.Puknell and Sholh Eshranghian" Essential of VLSI Circuits and Systems", PHI , 1st edition, 2005.
- T3: Neil H. E. Weste, David Money Harris, "CMOS VLSI Design-A Circuit and Systems Perspective", Pearson 4th Edition, 2011.

REFERENCES:

- R1: John P.Uyemura, "Introduction to VLSI Circuits and Systems", Wiley Edition, 2002.
- R2: Sung-Mo Kang & Yusuf Leblebici, "CMOS Digital Integrated Circuits Analysis & Design", McGraw Hill, 2nd edition, 1999.
- R3: Jan M Rabaey, "Digital Integrated Circuits-A Design Perspective", Prentice Hall, 1st edition, 1997.

Signature of the faculty Member framing the syllabus

SREE VIDYANIKETHAN ENGINEERING COLLEGE

(Autonomous) Sree Sainath Nagar, A. Rangampet-517 102

Department of Electronics and communication Engineering

Lesson Plan

Name of the Subject: Device Modeling (14MT15703) Class & Semester: M. Tech. (VLSI) – I Semester Name of the faculty Member: M.BHARATHI

S. No.	Торіс	No. of periods	Book(s) followed	Topics for self study
	UNIT – I: BASIC DI	EVICE PH	YSICS	
1.	Two Terminal MOS Structure : Flat- band voltage	1	T1	Semiconductors, Junctions and
2.	Potential balance & charge balance	1	T1	MOSFET overview-
3.	Effect of Gate-substrate voltage on surface condition	2	T1	Qualitative Description of MOS transistor
4.	Inversion	2	T1	Operation, MOS
5.	Small signal capacitance	1	T1	characteristics.
6.	Three Terminal MOS Structure: Contacting the inversion layer	1	T1	Properties of regions of operations,
7.	Body effect, Regions of inversion,	3	T1	
8.	Pinch- off voltage	1	T1	
	Total periods required:	12		
	UNIT – II: FOUR TERMIN	AL MOS 7	FRANSIST	OR
9.	Transistor regions of operation	1	T1	Source Referenced Vs
10.	General charge sheet models	2	T1	body referenced
11.	Regions of inversion in terms of terminal voltage	1	T1	modeling, Model Accuracy, Model
12.	strong inversion	2	T1	comparison.
13.	weak inversion, moderate inversion	2	T1	-
14.	interpolation models	1	T1	-
15.	effective mobility	1	T1	-
16.	temperature effects	1	T1	
17.	Breakdown, The p-channel MOS FET	1	T1	
	enhancement and depletion type	1	T1	1
19.	model parameter values	1	T1	
	Total periods required:	14	1	I
U	NIT -III: MOS TRANSISTOR WITH ION DIMENSION			NNELS & SMALL

20.	Enhancement of nMOS	3	T1	
21.	Depletion nMOS	2	T1	Channel length
22.	Enhancement pMOS	2	T1	- modulation
23.	1	2	T1	Sub threshold regions, Short channel effects
24.	punch-through	1	T1	
25.	carrier velocity saturation	1	T1	
26.	hot carrier effects	1	T1	
27.	Scaling	1	T1	
28.	effects of surface and drain series resistance	1	T1	
29.	effects due to thin oxides and high doping	1	T1	_
	Total periods required:	14		
1	UNIT -IV: MOS TRANSISTOR IN DYNA	MIC OPE	RATION-	LARGE SIGNAL
	MODEI			
30.	Quasi static operation,	1	T1	Non Quasi static
31.	Terminal currents in Quasi static	1	T1	Analysis.
	operation,			
32.	Evaluation of Charges in Quasi static	2	T1	_
	operation,			
33.	Transit time under DC conditions,	1	T1	
34.	Limitations of Quasi static Model,	1	T1	
	Total periods required:	06		
	UNIT-V:SMALL SIGNAL MODELIN	G FOR LO	W, MEDIU	IM AND HIGH
	FREQUE	NCIES:		
35.	low, Medium frequency small signal	2	T1	Noise – White noise,
	model for the intrinsic part			Flicker Noise, Small
36.	6	1	T1	Dimension Effects,
37.		2	T1	Equivalent Circuit
38.	Y-Parameter models	1	T1	Model, Considerations
39.	Non Quasi static Models	2	T1	of MOSFET in RF
				Applications.
				Research Topics:
				Research Needs for
				Compact Modeling,
				Effect of High Fields
				on MOS Device and
		0		Circuit.
	Total periods required:	8		
	Grand total periods required:	54		

T1 :Y. Tsividis," Operations and Modeling of the MOS Transistor", Oxford university Press,2nd edition.

REFERENCE BOOKS:

- R1: Trond Ytterdal, Yuhua Cheng &Tor A. Fjeldly "Device Modeling for Analog and RF CMOS Circuit Design" Wiley Publication ,2003.
- R2:Donald A Neamen & Dhrubes Biswas "Semiconductor Physics and Devices" Special Indian Edition ,2012.

Signature of the faculty Member Framing the syllabus

Department of Electronics and communication Engineering

Lesson Plan

Name of the Subject: FPGA Applications (14MT15707) Class & Semester: M. Tech. (VLSI) – I Semester Name of the faculty Member: T. Krishna Murthy

S. No.	Торіс	No. of periods	Book(s) followed	Topics for self study
	UNIT-		lonowcu	
1.	Introduction to Field Programmable	2	T1	Commercially
	Gate Arrays(FPGA):			Available FPGAs,
	Evolution of Programmable Devices, What			Actel ACT-3, Plus
	is FPGA, Applications of FPGAs.			Logic FPGA,
	Programming Technologies in FPGAs.			QuickLogic FPGA,
2.	Xillinx and Actel FPGAs :	2	T1	Algotronix FPGA and
	Xilinx FPGAs –XC2000, XC3000 and			Concurrent Logic
	Xillinx XC4000			FPGA,
3.	Actel FPGAs – Actel ACT-1, Actel ACT-2	1	T1	
4.	Altera FPGAs, Plessey FPGA	2	T1	
5.	Advanced Micro Devices (AMD) FPGA,	2		
	FPGA Design Flow.			
6.	Technology Mapping for FPGAs- Logic	1		
	Synthesis, Lookup Table Technology			
	Mapping			
	Total periods required:	10		
	UNIT- II: FPGA-based Em	bedded Pro		
7.	Hardware–Software Task Partitioning,	2	T2	Robot Axis Position
	FPGA Fabric Immersed Processors.			Control
8.	Interfacing Memory to the Processor,	3	T2	
	Interfacing Processor with Peripherals			-
9.	Design Re-use Using On-chip Bus	2	T2	
	Interface, Creating a Customized			
	Microcontroller.			
	Total periods required:	07		
10	UNIT- III: Motor Con	0	1	Democrat Marca (
10.		2	T2	Permanent Magnet
	Diagram for Robot Axis Control-Position			Synchronous Motor
11	Loop, Speed Loop and Power Module	2	TO	(PMSM), Test
11.	Case Studies for Motor Control-Stepper Motor Controller	2	T2	Environment for the Robot Controller and
	Motor Controller			Robot Controller and

12.	Permanent Magnet DC Motor, Brushless	2	T2	FPGA Design Test
	DC Motor			Methodology
13.	Permanent Magnet Rotor (PMR) Synchronous Motor	2	T2	
14.	Prototyping Using FPGAs	1	T2	
	Total periods required:	09		
	UNIT- IV: FIR Digital Filte	rs Using F	PGA	
15.	Digital Filters, FIR Filter-FIR Filter with	2	T3	IP Core FIR Filter
	Transposed Structure			Design and
16.	Symmetry in FIR Filters, Linear-phase FIR Filters	2	T3	Comparison of DA- and RAG-Based FIR
17		2	T3	Filters.
17.	Designing FIR Filters-Direct Window Design Method, Equiripple Design Method	Z	15	Filters.
18.	Constant Coefficient FIR Design-Direct	2	Т3	
	FIR Design			
19.	FIR Filter with Transposed Structure	3	Т3	
20.	FIR Filters Using Distributed Arithmetic	3	T3	
21.	Total periods required:	14	T3	
22.	UNIT- V: IIR Digit	al Filters U	sing FPGA	A
23.	Introduction to IIR, IIR Digital Filter	2	T3	Research Topic- Advanced FPGA
24.	IIR Coefficient Computation	1	T3	design and FPGA design of Software
25.	IIR Filter Implementation	2	T3	Defined Radios
26.	Finite wordlength effects and Optimization of the Filter Gain Factor.	1	T3	
27.	Fast IIR Filter-Time domain Interleaving, Clustered and Scattered Look-Ahead Pipelining	2	T3	
28.	IIR Decimator Design and Parallel	2	T3	-
	Processing			
	Total periods required:	10		
	Grand total periods required:	50		

- T1. S.Brown, R.Francis, J.Rose, Z.Vransic, "Field Programmable Gate Array", Kluwer Publication, 1992.
- T2. Rahul Dubey, "Introduction to Embedded System Design Using Field Programmable Gate Arrays", Springer , 2009.
- T3. Uwe Meyer-Baese, "Digital Signal Processing with Field Programmable Gate Arrays", Springer Series, 2007.

REFERENCES:

R1. S.Trimberger, Edr., "Field Programmable Gate Array Technology", Kluwer Academic Publications, 1994.

Signature of the faculty Member framing the syllabus

Department of Electronics and communication Engineering

Lesson Plan

Name of the Subject: IC Fabrication (14MT15705) Class & Semester: M. Tech. (VLSI) Name of the faculty Member: C Venkata Sudhakar

S. No	Topics	No. of Periods	Book(s) followed	Topics for self Study
UNIT-	I: CRYSTAL GROWTH, WAFER PREPARATIO)N, EPITAXY	AND OXIDA	TION
1.	Clean room and safety requirements	1	R1	Wafer preparation for
2.	Electronic grade silicon – Basic steps in IC fabrication-crystal plane and orientation – Defects in the lattice	1	T1	PMOS ,NMOS ,CMOS and Bi-CMOS device fabrication
3.	Czochralski crystal growing silicon shaping	1	T1	
4.	Processing considerations	1	T1	
5.	Vapour phase epitaxy–Liquid phase epitaxy-selective epitaxy-	1	T1	
6.	Molecular beam epitaxy - Epitaxial Evaluation –	1	T1	
7.	Growth mechanism and kinetics	1	T1	
8.	Thin oxides	1	T1	
9.	Oxidation Techniques and systems – Oxide properties	1	T1	
10.	Redistribution of dopants at interface	1	T1	
11.	Oxidation of polysilicon	1	T1	
12.	Oxidation induced effects.	1	T1	
	Total periods required:	12		
UNIT-	II: LITHOGRAPHY AND RELATIVE PL	ASMA ETC	CHING	
13.	Mask Making	1	T1	Lithography for PMOS ,NMOS ,CMOS
14.	Optical lithography	1	T1	and Bi-CMOS device

15.	Electron lithography	1	T1	fabrication
16.	X-ray lithography	1	T1	_
17.	Ion lithography	1	T1	-
18.	Plasma properties	1	T1	-
	Feature size control and Anisotropie Etch		T1	
19.	mechanism	2	T 1	_
20.	Feature size control and Anisotropie Etch mechanism	1	T1	
21.	Relative plasma etching Techniques and Equipments	1	T1	
	Total periods required:	10		
UNIT	III : DEPOSITION, DIFFUSION , ION IM	PLANTAT	ION	
22.	Deposition process – polisilicon	2	T1	Diffusion Diffusion Ion implantation for
23.	plasma assisted deposition	1	T1	PMOS, NMOS, CMOS and Bi-CMOS device
24.	models of diffusion in solids	1	T1	fabrication
25.	Fick's one dimensional diffusion equation	1	T1	
26.	Atomic diffusion mechanism	1	T1	
27.	Measurement Techniques	1	T1	
28.	Range theory – Carrier recovery due to annealing	2	T1	
29.	Implantation equipment	1	T1	
30.	Annealing Shalloe junction – high energy implantation – Physical vapour deposition – patterning	2	T1	
	Total periods required:	12		
UNIT	IV: METALLIZATION			
31.	Metallization applications – metallization choices	2	T1	Metallization for PMOS ,NMOS ,CMOS
32.	Metallization problems	2	T1	and Bi-CMOS device fabrication
33.	New role of metallization	1	T1	
34.	metallization systems	1	T1	

35. 36.	sputtering – problems associated with Al – Cu interconnect Comparison of RC delay of Polysilicon, Al.	2 2	T1 T1	-
	Total periods required:	10		
UNIT-	V : ANALYTICAL, ASSEMBLY TECHNI	QUES & PA	ACKAGING	OF VLSI DEVICES
37.	Analytical beams – Beams specimen interaction	2	T1	
38.	Chemical methods	1	T1	Research Topics: sub- micron and nano
39.	package types	1	T1	fabrication processes
40.	packing design considerations	1	T1	
41.	VLSI assembly technology	2	T1	
42.	Package Fabrication Technology	2	T1	
	Total periods required:	09		
	Grand total periods required:	53		

T1: S.M.Sze "VLSI Technology", Tata Mcgraw Hill,2nd edition, 1988.

REFERENCES BOOKS

- R1: Sorab. K. Gandhi "VLSI Fabrication and Principles", John wiley and sons, 1983.
- R2: Amar Mukherjee "Introduction to NMOS & CMOS VLSI system Design", Prentice Hall, 1986.
- R3: Mccanny and J.C.White "VLSI Technology and design", Academic Press, 1987.
- R4: Dasgupta "VLSI Technology", Pearson Education Pvt Ltd 2001.

Department of Electronics and communication Engineering

<u>Lesson Plan</u>

Name of the Subject: LOW VOLTAGE ANALOG CIRCUIT DESIGN (14MT15708) Class & Semester: M. Tech. (VLSI) – I Semester Name of the faculty Member: K.NEELIMA

S. No.	Торіс	No. of periods	Book(s) followed	Topics for self study
	UNIT – I: INTRODUCTION T			ESIGN
1.	Low-voltage analog circuit design	1	R2	Low Power design
	challenges			Considerations.
2.	Design for Low power	2	T1	
3.	Low Power Circuit technologies	2	T1	
4.	Techniques for Leakage Power	2	T1	
	Reduction			
5.	Dynamic Voltage Scaling	2	T1	
	Total periods required:	09	•	
	UNIT – II: FGMOS, CIRCUIT APPLICA	ATIONS AN	ND DESIGN	
6.	The FGMOS Device	1	R1	FGMOS based
7.	Designing with FGMOS	2	R1	Applications.
8.	Minimum Input Capacitance	2	R1	
9.	Initial Design ideas	2	R1	
10.	Circuit Applications and design	2	R1	
	Techniques			
	Total periods required:	09		
	UNIT -III: DESIGN F	FOR LOW	POWER	
	Lightweight Embedded Systems	3	T1	Power estimation of
12.	Low-Power Design of Systems on Chip	3	T1	Various Circuits.
13.	Implementation- Level Impact on Low	2	T1	
	Power Design			
14.	Accurate Power estimation of	2	T1	
	combinational CMOS digital Circuits			
15.	Clock Powered CMOS for Energy-	2	T1	
	Efficient Computing			
	Total periods required:	12	•	
	UNIT -IV: Analog RF	CMOS Ci	rcuits - I	
16.	Power Considerations – sources of power	2	T2	Limitations in Design
	Dissipation			of Receivers.
17.	Limits in Power dissipation	2	T2	

18.	V _{DD} Downscaling	2	T2	
19.	Front-End Challenges	3	T2	_
20.	Superheterodyne architecture	3	T2	
	Total periods required:	12		
	UNIT -V: Analog RF	CMOS Cir	cuits - II	
21.	Technology Structural Alternatives	2	T2	PLL Design
22.	schematic Design Techniques for power	2	T2	Considerations.
	saving in RF			Research Topics: Low
23.	RF Amplifier Design	3	T2	Voltage Analog HF
24.	Mixer Design	3	T2	Circuits.
25.	PLL Design	3	T2	
	Total periods required:	13		
	Grand total periods required:	55		

- T1: Vojin G.Oklobdzija,"Digital Design and Fabrication", CRC Press, 2nd edition, 2008.
- T2: Unai Alvarado, Guillermo Bistue and Inigo Adin, "Low Power RF Circuit Design in standard CMOS Technology", Springer, 2011.

REFERENCE BOOKS:

- R1: Dr Esther Rodriguez-Villegas,"Low Power and Low Voltage Circuit Design with the FGMOS Transistor", The Institution of Engineering and Technology, 2006.
- R2: Shouri Chatterjee, Kong Pang Pun, et al, "Analog Circuit Design Techniques at 0.5V", springer, 2007.

Signature of the faculty Member framing the syllabus

SREE VIDYANIKETHAN ENGINEERING COLLEGE

(Autonomous)

Sree Sainath Nagar, A. Rangampet-517 102

DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING

Lesson Plan

Name of the Subject: Research Methodology (14MT10310) Name of the faculty Member: Class & Semester: M. Tech. - I Semester

Section:

S. No.	Торіс	No. of periods required	Book(s) followed	Topics for self study
	Unit-I: Introduction to Re		odology	
1.	Research objective and Motivation	1	T1	Problems
2.	Types of Research –Descriptive vs Analytical, Applied vs Fundamental, Quantitative vs Qualitative, Conceptual vs Empirical	1	T1	encountered by researchers.
3.	Research Approaches	1	T1	
4.	Research and Scientific Methods	1	T1	
5.	Research Process	2	T1	
6.	Criteria of Good Research	1	T1	
	Total of periods required:	7		
	Unit-II: Research Prol	olem and De	sign	
7.	What is Research Problem?	1	T1	Experimental
8.	Selecting the Problem	1	T1	designs. Developing
9.	Necessity of Defining the Problem	1	T1	research plan.
10.	Techniques involved in Defining a Problem	2	T1	
11.	What is Research Design? Its need and features	1	T1	
12.	Important concepts of Research Design	1	T1	
13.	Designing Methods: Research design in case of exploratory research studies, Research design in case of descriptive and diagnostic research studies, Research design in case of hypothesis-testing research studies	2	T1	
	Total of periods required:	9		
	Unit-III: Data Collection, An	alysis, and l		
14.	Collection of Primary Data: Observation Method, Interview Method, Questionnaires, Schedules, Other Methods	1	T1	Guidelines for constructing questionnaires and
15.	Collection of Secondary Data	1	T1	interviews.
16.	Selection of Appropriate Method for Data Collection	1	T1	
17.	Processing Operations: Editing, Coding, Classification and Tabulation	2	T1	
18.	Types of Analysis	1	T1	
19.	What is Hypothesis? Basic Concepts of Testing Hypothesis: Null hypothesis and alternative hypothesis, Level of significance,	2	T1	

	Decision rule, Type I and Type II errors,			
	Two-tailed and One-tailed tests			
20.	Hypothesis Testing Procedure	1	T1	
	Total of periods required:	9		
	Unit-IV: Statistics	in Researc	ch	
21.	Review of Statistical Techniques: Mean, Median, Mode	1	T1	Simple regression analysis.
22.	Geometric Mean, Harmonic Mean, Variance, Standard Deviation	1	T1	
23.	Measure of Asymmetry	1	T1	
24.	Normal Distribution	2		
25.	Chi-Square as a Test for Comparing Variance	1	T1	
26.	Steps Involved in Applying Chi-Square Test	1	T1	
27.	Problems	2		
	Total of periods required:	9		
	Unit-V: Interpretation a	nd Report	Writing	
28.	Interpretation: Meaning, Importance	1	T1	Mechanics of writing
29.	Interpretation: Techniques and Precautions	1	T1	research report.
30.	Report Writing: Significance and Different Steps	2	T1	
31.	Types of Reports	1	T1	
32.	Precautions in Report Writing	1	T1	
	Total of periods required:	6		
	Grand total of periods required:	40		

Text Book:

T1. C.R. Kothari, *Research Methodology: Methods and Techniques*, New Age International Publishers, New Delhi, 2nd Revised Edition, 2004.

Reference Books:

- R1. Ranjit Kumar, *Research Methodology: A step-by-step guide for beginners*, Sage South Asia, 3rd ed., 2011.
 R2. R. Panneerselvam, Research Methodology, PHI learning Pvt. Ltd., 2009

Signature of the faculty Member framing the syllabus

SREE VIDYANIKETHAN ENGINEERING COLLEGE (Autonomous)

Sree Sainath Nagar, A. Rangampet-517 102

Department of Electronics and communication Engineering

Lesson Plan

Name of the Subject: ULSI Technology (14MT15709) Class & Semester: M. Tech. (VLSI) – I Semester Name of the faculty Member:

S.	Торіс	No. of	Book(s)	Topics for self study
No.		periods	followed	
	UNIT	1	I	
1.	Cleanroom technology - Intoduction, cleanroom classification	1	T1	Transmission Electron Microscopy (TEM)
2.	cleanroom design concept	1	T1	
3.	cleanroom installation	1	T1	
4.	cleanroom operation	1	T1	
5.	Automation, related facility systems	1	T1	
6.	Wafer-cleaning technology-	1	T1	
	Introduction, basic concepts of wafer cleaning			
7.	Wet-cleaning technology	1	T1	
8.	Dry-cleaning technology	1	T1	
9.	ULSI Process Technology	2	T2	
	Total periods required:	10		
	UNIT	– II		
10.		1	T1	
	Aspects of Epitaxy			
11.	Conventional Si Epitaxy	1	T1	
12.	Low temperature Epitaxy of Si	1	T1	
13.	Selective Epitaxial Growth of Si	1	T1	
14.	Characterization of Epitaxial films	1	T1	
15.	Conventional and Rapid Thermal	1	T1	
	Processes- Introduction, Requirements			
	for Thermal Processes			
16.	Rapid Thermal Processing	1	T1	
17.	Dielectric and Polysilicon Film	1	T1	
	Deposition - Introduction, Deposition			
	Processes			
18.	APCVD Silicon Oxides	1	T1	
19.	LPCVD Silicon Oxides	1	T1	
20.	LPCVD Silicon Nitrides	1	T1	
21.	LPCVD Polysilicon Films	1	T1	
22.	Plasma Assisted Depositions	1	T1	
23.	*	1	T1	
24.	Applications of Deposited Polysilicon,	1	T1	1
	Silicon Oxide and Silicon Nitride Films.			
	Total periods required:	16		

Department of Electronics and Communication Engineering

	UNIT	-111	1	
25.	Lithography - Introduction, Optical Lithography	1	T1	Interconnects
26.	Electron Lithography	1	T1	
27.		1	T1	
28.	Ion Lithography	1	T1	
29.		1	T1	
30.	Etch Mechanisms	1	T1	
31.		1	T1	
32.	Plasma Processing Processes	1	T1	
33.		1	T1	
34.	Wet Chemical Etching	1	T1	
35.	Metallization- Metal Deposition Techniques	1	T1	
36.	Silicide Process	1	T1	
37.	Processes	1	T1	
38.	Multilevel Metallization	1	T1	
39.	Metallization Reliability	1	T1	
	Total periods required:	15		
10	UNIT -		74	
40.	Process integration - Introduction, Basic Process Modules and Device Considerations for ULSI	1	T1	
41.	CMOS Technology	1	T1	
42.	Bipolar Technology	1	T1	
43.	BiCMOS Technology	1	T1	
44.	MOS Memory Technology	1	T1	
45.	Process Integration Considerations in ULSI Fabrication Technology	1	T1	
	Total periods required:	06		
4 /	UNIT			
46.	Assembly and Packaging-Introduction, package types,	1	T1	Relations between D and AC Lifetimes, Some Recent ULS
47.	ULSI Assembly Technologies, Package	1	T1	Reliability Concern
	Fabrication Technologies			Mathematics of Failur
48.	6	1	T1	Distribution.
49.	Special Package Considerations, Other			ULSI devices:
E 0	ULSI Packages.	1	T 1	DRAM cell, SRAM
50.	Reliability - Introduction, Hot Carrier	1	T1	cell.
E 1	Injection	1	T 1	Research Topics:
51.	Electromigration,	1	T1	Advance Interconnect
52.	6	1	T1	_
53.	Oxide Breakdown, Effect of Scaling on Device Reliability	1	T1	

Department of Electronics and Communication Engineering

58

Text Books:

- T1. C.Y.Chang, S.M.Sze, ULSI Technology, McGraw-Hill, 2000.
- T2. Chih-Hang Tung, George T.T.Sheng, Chih-Yuan Lu, ULSI Semiconductor Process Technology Atlas, John Wiley & Sons, 2003.

Signature of the faculty Member framing the syllabus