

(Autonomous)

Sree Sainath Nagar, A. Rangampet-517 102

Engineering College (Autonomous) Department of Electrical and Electronics Engineering

Lesson Plan

Name of the Subject Class & Semester : Power System Security and State Estimation

: M. Tech. (EPS) – I Semester

Name of the faculty Member

:Dr. N.M.G.KUMAR

S. No.	Торіс	No. of periods	Book(s) followed	Topics for self-study				
	UNIT-I: POWER SYSTEM NETWORK MATRICES							
1	Formation of bus admittance matrices by direct inspection method.	2	T2,R2					
2	Algorithm for formation of Bus impedance matrix:	1	T2,R2					
3	Addition of a branch	2	T2,R2	Compute the Y _{bus} and				
4	Addition of a link,	2	T2,R2	Z _{bus} matrix using				
5	Removal element in Bus impedance matrix	2	T2,R2	graphical methods with mutual's				
6	Simple problems.	2	T2,R2					
7	Π-representation of off-nominal tap transformers.	1	T2,R2					
	Total periods required:	12						
	UNIT-II: POWER	FLOW ST	UDIES					
8	Introduction to load flow analysis, Classification of buses, SLFE	2	T2,R2					
9	Gauss-Seidal method- flow charts	2	T2,R2					
10	Newton Raphson method polar format	2	T2,R2					
11	Newton Raphson method Rectangular format-flow charts	1	T2,R2	Develop the MATLAB				
12	Decoupled load flow method- flow charts	1	T2,R2	program for IEEE test systems				
13	Fast Decoupled load flow method - flow charts	1	T2,R2					
14	Comparison of load flow methods	1	T2,R2	-				
15	DC power flow method - flow charts	2	T2,R2					
16	Simple problems for each method is one minimum of 4 bus system	3	T2,R2					
	Total periods required:	15						
	UNIT-III: FAU	LT ANALY	ISIS	1				
17	Short circuit studies- introduction, matrices for various faults- three phase system, Rotating, Stationary Elements	2	T2,R2					
18	short- circuit calculations using Z_{bus} , Z_{f}^{abc}	1	T2,R2	Dovelop the MATLAD				
19	short-circuit calculations using Z_f^{abc} , Z_f^{012}	1	T2,R2	Develop the MATLAB program for IEEE test				
20	short-circuit calculations using Y_f^{abc} , Y_f^{012}	1	T2,R2	system fault				
21	Analysis of balanced three phase faults - Simple problems.	2	T2,R2	- calculations				
22	Analysis of unbalanced three phase faults - Simple problems.	2	T2,R2]				
23	Standard two machine system problem	2	T2,R2					

	Total periods required:	11					
	UNIT-IV: POWER SYSTEM SECURITY						
24	Introduction to - power system security	1	T1,R1				
25	Factors influencing power system security	1	T1,R1				
26	Contingency analysis: Detection of Network problems	2	T1,R1	Apply the concepts of			
27	An overview of security analysis, linear sensitivity factors	2	T1,R1	- system security estimation techniques			
28	AC power flow methods, Contingency selection	2	T1,R1	for real world applications			
29	concentric relaxation	1	T1,R1				
30	Bounding- simple problems.	2	T1,R1				
	Total periods required:	11	T1,R1				
	UNIT V: STATE ESTIMAT	TION IN PO	DWER SYST	EM			
31	Introduction to power system State Estimation	2	T1,R1				
32	Method of least squares	2	T1,R1				
33	Statistics – errors – estimates	2	T1,T2				
34	Test for bad data	1	T1,R1	Apply the concepts of			
35	Structure and formation of Hessian matrix	2	T1,R1	state estimation techniques for real			
36	Power system state estimation mathematical modelling	1	T1,R1	world applications			
37	Simpleproblems.	2	T1,R1				
	Total periods required:	12					
	Grand total periods required:	59]			

- 1. Allen J.Wood and Wollenberg B.F., *Power Generation Operation and control*, John Wiley & Sons, 2ndedition,2006.
- 2. Nagrath, I.J. and Kothari D.P., Modern Power System Analysis, TMH, New Delhi, 2004.

REFERENCES:

- 1. Grainger, J.J. and Stevenson, W.D., Power System Analysis, Tata McGraw Hill, New Delhi, 2003.
- 2. Stagg and El Abiad: *Computer methods in power systems analysis*, McGraw Hill ISE, 1986.

Signature of the faculty Member framing the syllabus

(Autonomous) Sree Sainath Nagar, A. Rangampet-517 102

VIDYANIKETHAN Engineering College (Autonomou Department of Electrical and Electronics Engineering

Name of the Subject Class & Semester

SREE

: Static and Digital Protection of Power Systems

: M. Tech. (EPS) – I Semester

Name of the faculty Member

: Dr. M. S. Sujatha

S. No.	Торіс	No. of periods	Book(s) followed	Topics for self-study
	- I: INTRODUCTION TO STATIC AND			
1	Basic construction of static relays	1	T1	Basic principle of
2	Advantages of static relays	1	T1 T1	operation of relay.
3	Level detectors	1	T1	
				-
4	Replica impedance, mixing circuits	2	T1	4
5	General equation for two input phase and	2	T1	
	amplitude comparators	2	T 2	-
6	Duality between amplitude and phase	2	T2	
7	comparator		T 2	-
/	Numerical Relays Block diagram of	1	T2	
	typical Numerical Relay, Advantages and	1		
	Disadvantages.	10		
TINIT	Total periods required: – II: COMPARATORS	10		
		2	T 1	Organstian of mostifian
8	Circulating current type rectifier bridge	2	T1	Operation of rectifier
	comparators.			bridges.
9	Opposed voltage type rectifier bridge	2	T1	-
	comparators.			
10	Direct and Instantaneous comparators.	1	T1	
11	Coincidence circuit type block spike	1	T1	
	phase comparator.			
12	Techniques to measure the period of	1	T1	
	coincidence.			
13	Integrating type.	1	T1	
14	Rectifier and vector product type phase	2	T1	
	comparators.			
15	Conicsection characteristics	1	T1	
16	Three input amplitude comparator, Hybrid	2	T1	
	comparator.			
	Total periods required:	13		
UNIT	-III: STATIC OVER CURRENTAND DI	FFERENTI	AL RELAY	X <mark>S</mark>
17	Introduction to over current relay	1	R1	Electromagnetic type
18	Instantaneous over current relay	1	R1	over current relays.
19	Inverse Time overcurrent relays	1	T2	
20	Definite time over current relay	1	T2	
21	Inverse definite time over current relay.	1	T2	
22	Analysis of static differential relays.	2	T2	
23	Static relay schemes.	1	T1	
24	Duo bias transformer differential	2	T2	

25 Harmonic restraint relay. 1 Total periods required: 11 UNIT – IV: STATIC DISTANCE RELAYS 26 Static impedance and reactance relays. 1 27 MHO and angle impedance relays. 2 28 Sampling comparator. 1 29 Realization of reactance and MHO relay using a sampling comparator. 2 30 Effect of power swings on the performance of Distance relays. 2 31 Principle of out of step tripping and blocking relays. 1	T2 T2 T1 T2 T2 T2 T2 T2 T2	Electromagnetic type distance relays.
UNIT – IV: STATIC DISTANCE RELAYS 26 Static impedance and reactance relays. 1 27 MHO and angle impedance relays. 2 28 Sampling comparator. 1 29 Realization of reactance and MHO relay using a sampling comparator. 2 30 Effect of power swings on the performance of Distance relays. 2 31 Principle of out of step tripping and blocking relays. 1	T2 T1 T2 T2 T2	U
26Static impedance and reactance relays.127MHO and angle impedance relays.228Sampling comparator.129Realization of reactance and MHO relay using a sampling comparator.230Effect of power swings on the performance of Distance relays.231Principle of out of step tripping and blocking relays.1	T2 T1 T2 T2 T2	U
27MHO and angle impedance relays.228Sampling comparator.129Realization of reactance and MHO relay using a sampling comparator.230Effect of power swings on the performance of Distance relays.231Principle of out of step tripping and blocking relays.1	T2 T1 T2 T2 T2	U
28 Sampling comparator. 1 29 Realization of reactance and MHO relay using a sampling comparator. 2 30 Effect of power swings on the performance of Distance relays. 2 31 Principle of out of step tripping and blocking relays. 1	T1 T2 T2	distance relays.
29Realization of reactance and MHO relay using a sampling comparator.230Effect of power swings on the performance of Distance relays.231Principle of out of step tripping and blocking relays.1	T2 T2	_
using a sampling comparator.30Effect of power swings on the performance of Distance relays.31Principle of out of step tripping and blocking relays.	T2	_
performance of Distance relays.31Principle of out of step tripping and 1 blocking relays.		_
blocking relays.	T2	
	1	
32 Effect of line length and source 1 impedance on distance relays.	T2	_
Total periods required: 10		·
UNIT – V: MICROPROCESSOR BASED PROTECTIV	ERELAYS	
33Microprocessor based Overcurrentrelays- impedancerelays-directionalrelay- reactancerelay.3	T2	Review of 8085 and 8086 microprocessors, ALP programs.
34Generalized mathematical expression for distance relays.1	T2	
Measurement of Resistance and Reactance 2 relays.	T2	_
35 MHO and Offset MHO relays. 2	T2	
36Realization of MHO and offset MHO2characteristics.	T2	
37MicroprocessorImplementationof1Digital Distance Relaying Algorithms.	T2	
Total periods required: 11		
	nd total perio	ods required: 55

- 1. T.S. Madhava Rao, *Power system Protection static relay*, 2nd Edition, Tata McGrawHill Publishing Company limited, 2004.
- 2. Badri Ram and D.N. Vishwakarma, *Power system Protection and Switchgear*, 2nd Edition, Tata McGraw Hill Publication Company limited, 2013.

REFERENCE BOOKS:

1. Bhuvanesh A Oza, Nirmal Kumar C Nair et., al., *power system protection and switchgear*, Tata McGraw Hill Publication Company Limited.

Signature of the faculty Member framing the syllabus

(Autonomous)

Sree Sainath Nagar, A. Rangampet-517 102

Engineering College (Autonomous) Department of Electrical and Electronics Engineering

Lesson Plan

Name of the Subject Class & Semester : ADVANCED POWER SYSTEM STABILITYANALYSIS

: M. Tech. (EPS) – I Semester

Name of the faculty Member :Dr. N.M.G.KUMAR

S. No.	Торіс	No. of	Book(s)	Topics for self-study
		periods	followed	
	UNIT-I: THE ELEMENTARY			Γ
1	AClassicalmodelof SMIB	2	T1,R1	-
2	System response to small disturbances:	2	T1, R1	
-	methods, unregulated Machine.	_		
3	Torque speed characteristics of	1	T1	
	regulated synchronous Machine		T 4	Realize various power
4	Regulated synchronousmachine	1	T1	system component
5	Voltageregulatorwithonetimelag	2	T1	models for Stability
6	Governorwith one time lag	1	T1	analysis using
7	Classical model of multi-machine	1	T1	MATLAB package
	system	-		1
8	ModesofoscillationofanunregulatedMul	2	T1,R1	
	timachine system			-
9	Problems	2	T1,R1	-
	Total periods required:	14		
	UNIT-II: THE SYNCH	RONOUS M	ACHINE	1
11	Clarks and Park's Transformation	2	T1,R1	
12	flux linkage equations, self and mutual	2	T1	
	inductances of stator and rotor			
13	transformation of inductances	2	T1	Sate space solution for
14	state space model of SMIB in voltage	2	T1,T2	SMIB system using
15	state space model of SMIB in current	1	T1	programming
16	EffectofexcitationonDynamicstability	1	T1,R1	techniques
17	examination of dynamic stability by	2	T1, R1	
	Routh's criterion			
	Total periods required:	12		
	UNIT-III: EXCITA	TION SYSTE	MS	·
18	Simplified view of excitation control,	1	T1 D1	
	Control configuration	1	T1,R1	
19	Excitation system response , Non-	2	T1 D1	
	continuously regulated systems		T1, R1	
20	continuously regulated systems	1	T1,R1	
21	Excitation system compensation	1	T1, R1	Stability analysis using SIMULINK/MATLAB package
22	state space description of the excitation	1		
	system simplified linear model		T1,R1	
23	Type –2system: rotating rectifier	2	T4 54	1
	system,	_	T1,R1	
24	Type-3 system: Static with terminal	1	74 54	
- ·	potential and current supplies,	•	T1, R1	

25	Type –4system:non–continuousacting -	1		
20	Block diagram representation-state	•	T1,R1	
	space modeling		,	
	Total periods required:	10		
	UNIT-IV: EFFECT OF EXC	ITATION O	N STABILITY	
26	Introduction to effectof excitation on generator power limits	1	T1	
27	Effect of the excitation system on Transient stability.	1	T1	
28	Approximate model of the complete exciter generator system	1	T1	Numerical verification
	Supplementary stabilizing signals	2	T1,T2	using MATLAB package
30	Lead compensation	1	T1	
31	Stability aspect using Eigen value approach	2	T1, R1	
	Total periods required:	8		
	UNIT V: VOLTAGE S	TABILITY AI	VALYSIS	·
32	What is voltage stability–Factors affecting voltage instability and collapse	2	T2,R1	
33	ComparisonofAngleandvoltagestability	2	T2,R1	
34	Analysisofvoltageinstability collapse – Controlof voltage instability	1	T2,R1	
35	Review of Lyapunov's stability theorems of non-liner systems	1	R2	
36	Method based on first concept	1	R2	
37	Method based on first integrals	1	R2	Stability analysis using
38	Quadratic forms	1	R2	MATLAB package
39	Variable gradient method	1	R2	
40	Zubov's method	1	R2	
41	Popov's method,	1	T2,R2	
42	Lyapunov function for single machine	1	T2,R2	
	connected to infinite bus			
	Total periods required:	13		
	Grand total periods required:	57		

- P.M.Anderson, A.A.Fouad, *Power System Control and Stability*, 2ndedition, <u>IEEE Press</u>, 2003.
 K.R.Padiyar, *Power System Dynamics (Stability & Control)*, 2ndedition, B.S.Publications, Hyderabad, India, 2008.

REFERENCES:

- 1. Prabha Kundur, Neal J.Balu, Mark G.Lauby, Power System Stability and Control, 2ndedition, McGraw-Hill, 1994.
- 2. M.A.Pai, Power System Stability-Analysis by the direct method of Lyapunov, North Holland Publishing Company, Newyork, 1981.

framing the syllabus

(Autonomous) Sree Sainath Nagar, A. Rangampet-517 102

Department of Electrical and Electronics Engineering

Name of the Subject: Power Electronic ConvertersClass and Semester: M. Tech. (EPS) – I SemesterName of the faculty Member:T SUNEEL KUMAR

S. No.	Торіс	No. of	Book(s)	Topics for self-study
	UNIT I MODEDN DOWED O	periods	followed	
	UNIT – I: MODERN POWER SI	LINICOND		
1	Power Diode - Reverse recovery characteristics – types	1	T1,T2	Analysis of Power Diode, BJT, MOSFET,
	Power transistors		T1,T2	IGBT, THYRISTOR
2	steady state characteristics and switching characteristics	1		GTO and IGCT using PSPICE
3	IGBT steady state characteristics and switching characteristics	1	T1,T2	
4	Thyristor steady state characteristics and switching characteristics	2	T1,T2	-
5	GTO – IGCT– steady state characteristics and switching characteristics	1	T1,T2	
6	Gate drive circuits for SCR, MOSFET	1	T1,T2	
7	Gate drive circuits for IGBT, Base drive circuit for Power BJT. Comparison of power devices.	2	T1,T2	
	Total periods required:	9		
	UNIT – II: MULTIPULSE CO		ED RECTIF	TERS
8	Six pulse SCR rectifiers - semi converters, operation with different firing angles, power factor and THD	2	T1	PSPCE Simulation of single phase and three phase half and fully controlled converters for different loads.
9	Six pulse SCR rectifiers – full converters, operation with different firing angles power factor and THD	2	T1	
10	Effect of line inductance	1	T1	Plot wave forms for 12
11	Power factor improvements- extinction angle control, symmetric angle control PWM control-single and three phase control	2	T1	and 24 pulse converters for 45° , 90° and 120° firing angles for different loads.
12	Three phase dual converters Operation with different α angles	1	T1	
13	Twelve pulse SCR rectifiers- idealized 12 pulse rectifier operation, effect of line and leakage inductance, power factor and THD	2	R1	
14	Single phase series converters	1	T1	1
15	18 pulse SCR rectifiers, operation.	1	R1	
16	24 pulse SCR rectifiers, operation.	2	R1	
	Total periods required:	14	I	I

	UNIT -III: AC VOLTAGE CONTROL	LERS AN	D CYCLOC	ONVERTERS
	Single phase AC voltage controllers with		T1,T2	PSPICE Simulation of
17	R, RL and RLE loads – operation and	2	,	single phase and three
	waveforms			phase ac voltage
	AC voltage controllers with PWM		T1	controllers.
18	Control	1		
	Effects of source and load inductances on		T1	Plot wave forms of
19	AC voltage controllers	1	11	single phase and three
20		1	T1	phase AC voltage
20	Synchronous tap changers – Applications	1		controllers for firing
01	Three Phase AC Voltage Controllers –	1	T1	angles 90° , 120° for
21	Analysis of controllers with star and delta	1		different loads.
	Connected – applications			different loads.
22	numerical problems	1	T1	Distance frances f
	Single phase cycloconverters – analysis		T1	Plot wave forms of
23	of Midpoint and bridge configurations –	1		single phase and three
	Limitations	-		phase cycloconverters
	three phase cycloconverters – analysis of		T1	for firing angles 90° ,
24	Midpoint and bridge configurations –	1	11	120° for different loads.
24	Limitations	1		
			T1	
25	Advantages – Applications – numerical	1	11	
	problems			
	Total periods required:	10		
	UNIT – IV: ANALYSIS OF DC-DC			
26	Voltage commutated chopper - operation	1	R3	PSPICE Simulation of
27	current commutated chopper- operation	1	R3	Buck, Boost, Buck-
28	switch mode regulators – buck regulators	1	T1,T2,R2	Boost regulators
29	boost regulators, buck-boost regulators	1	T1,T2,R2	
30	cuk regulators – condition for continuous		T1	
	inductor current and capacitor voltage	2		Brief study of
	design of LC filter – comparison of	2		Bi directional DC-DC
	regulators			converters, topologies,
31	Multi-output boost converters -	1	T1	applications.
	advantages applications	1		
32	Numerical problems	1	T1	
33	Resonant Converters- Concept of ZVS		T1,R2	
00	and ZCS, principle of operation	2		
34	Analysis of M-type and L-type		T1,R2	
51	Converters.	2	11,112	
	Total periods required:	12		
	UNIT – V: PWM AND MUI		L INVERTE	RS
25		2		PSPICE simulation of
35	Voltage control of single phase inverters	Z	T1	
26	using single, multiple PWM	2	T1	three phase PWM
36	Sinusoidal, modified sinusoidal pulse	2	T1	inverter.
	width modulation, phase displacement			
	control for voltage control of single phase			Requirements of
	inverter			hardware components
	Advanced PWM techniques transzoidal	2		in design of PWM
37	Advanced PWM techniques-trapezoidal,		T1	
37	staircase, stepped, harmonic injection,		T1	generators.
	staircase, stepped, harmonic injection, delta modulations.			generators.
38	staircase, stepped, harmonic injection, delta modulations. sinusoidal PWM, 60 degree PWM,	1	T1	generators.
	staircase, stepped, harmonic injection, delta modulations. sinusoidal PWM, 60 degree PWM, Voltage control of three phase inverter	1 1		generators.
38	staircase, stepped, harmonic injection, delta modulations. sinusoidal PWM, 60 degree PWM,		T1	generators.

40	Harmonic reduction techniques for inverters	2	T1		
41	diode clamped Multilevel inverters operation, features, applications	1	T1		
42	flying capacitor Multilevel inverters operation, features, applications	1	T1		
43	cascaded Multilevel inverters operation, features, applications	1	T1		
	Total periods required:	13		•	
	Grand total periods required:	58			

- 1. Rashid M.H., Power Electronics circuits, devices and applications, 3rd edition, Prentice Hall publications, 2009.
- 2. Ned Mohan, Undeland and Robbin, Power Electronics: converters, Application and Design, John Wiley and sons Inc., Newyork, 1995.

REFERENCE BOOKS:

- 1. Bin Wu, High power converters and AC Drives, John Wiley and Sons, 2006.
- P.C Sen, *Modern Power Electronics*, 1st edition, Wheeler publishing Company, 1998.
 Dr.P.S Bimbhra, *Power Electronics*, 4th edition, Khanna publishers, 2007.

Signature of the faculty Member framing the syllabus

(Autonomous) Sree Sainath Nagar, A. Rangampet-517 102 Department of Electrical and Electronics Engineering

Name of the Subject Class& Semester Nameof the faculty Member :ADVANCED CONTROL SYSTEMS :M. Tech. (EPS) – I Semester :Dr. T.DEVARAJU

S. No.	Торіс	No. of period s	Book(s) followed	Topics for self-study
	UNIT – I:CONTROLLABILITY	AND OF		
1	Concept of controllability and observability	1	T1	Controllability and
2	Tests for Controllability and Observability,	2	T1,T2&T3	observability tests &
	Kalmans test and Gilbert's test for Continuous			verification through
	Time Systems			MATLAB.
3	Kalmans Principle of Duality	1	T1&T3	
4	Controllability and Observability for JCF	2	T1& T2	
5	Controllability and Observability for CCF and OCF	2	T1	
6	Effect of State Feedback on Controllability and Observability.	2	T1	
	Total periods required:	10		
	UNIT – II: ANALYSIS OF NOI	NLINEAR S	SYSTEMS	
1	Introduction to Non-linear Systems	1	T3	Derivation of
2	Types of physical Non-linearities	1	T3	descrining functions
3	Characteristics of Physical Non-Linearities	1	T3	for the combination of
4	Describing Functions for Non-Linear systems	1	Т3	different non
5	Derivation of Describing Functions: Dead Zone, Saturation, Backlash, Relay With Dead Zone and	3	Т3	linearities.
	Hysteresis			_
6	Introduction to Phase-Plane Analysis	1	Т3	_
7	Singular Points	1	Т3	_
8	Isocline Method for Constructing Trajectories	1	T3	_
9	Delta Method	1	Т3	
	Total periods required:	11		
	UNIT - III: STABILITY			
1	Stability in the Sense of Lyapunov	1	T1	Definiteness and
2	Lyapunov's stability Theorems	2	T1	Sylvester principle.
3	Graphical representation of Stability	1	T1	_
4	Second method of Lyapunov	1	T1	_
5	Lyapunov functions	2	T1	_
6	Variable Gradient Method	2	T1	
7	Krasovaskii's Method	1	T1	
	Total periods required:	10		
	UNIT – IV: CONTROLLERS AND			
1	Application of Controllability & Observability in LTI systems	2	T1,T2&T3	State feedback controller design using
2	Design of State Feedback Control through Pole Placement	2	T1,T2&T3	MATLAB
3	Full Order Observer and Reduced Order Observer	2	T2&T3]

4	State regulator problem	2	T2	
5	Riccati equation	1	T2	
	Total periods required:	9		
	UNIT – V: OPTIMAL	CONTRO	L	
1	Introduction to Optimal Control	1	T1	Transverality condition
2	Formulation of Optimal Control Problems	1	T1	and E-L equation.
3	Calculus of Variations, Minimization of	2	T1	Pontroygens principle.
	functionals of Single Function			
4	Euler Lagrange Equation	2	T1	
5	2 point Boundary value problems	2	T1	
6	Constrained Minimization, Minimum Principle	1	T1	
7	Control Variable Inequality Constraints	1	T1	
8	Control and State Variable Inequality	1	T1	
	Constraints.			
	Total periods required:	11		
	Grand total periods required:	51		

- M. Gopal, *Modern Control System Theory*, 2nd edition, New Age International Publishers, 1996.
 K. Ogata, *Modern Control Engineering*, 3rd edition, Prentice Hall of India, 1998.
 A. Nagoorkani, Advanced Control Theory, 3rd edition, RBA Publications, 2007

REFERENCE BOOKS:

- 1. I.J. Nagrath and M.Gopal, Control Systems Engineering, New Age International (P) Ltd. 2007.
- 2. M. Gopal, Digital Control and State Variable Methods, Tata Mc Graw-Hill Companies, 1997.

Signature of the faculty Member framing the syllabus

(Autonomous) Sree Sainath Nagar, A. Rangampet-517 102

Engineering College (Autonomous)

Department of Electrical and Electronics Engineering

Lesson Plan

Name of the Subject

:REACTIVE POWER COMPENSATION AND MANAGEMENT

Class& Semester

:M. Tech. (EPS) – I Semester

: Dr. P. Umapathi Reddy

				Topics for self-study	
		periods	followed		
UNIT – I:Reactive Power Compensation					
1	Need for Reactive Power compensation	2	T1		
2	Reactive power characteristics, ideal and	2	T1		
	Practical compensators				
3	Power factor correction and voltage	2	T1		
	regulation				
4	Load compensator as a voltage regulator	2	T1		
5	Phase balancing, power factor correction of unsymmetrical loads, Examples	2	T1		
	Total periods required:	10			
	UNIT – II: Reactive power compe	ensation in	transmissio	n system	
6	Steady state Reactive power compensation and uncompensated line	2	T1		
7	Types of compensation and Passive shunt compensation	2	T1		
8	Series compensation, Dynamic shunt compensation and examples	2	T1		
9	Transient state Reactive power compensation and Characteristic time periods	1	T1		
10	Passive shunt compensation	1	T1		
11	Static compensations and series capacitor compensation	2	T1		
12	Compensation using synchronous condensers and examples.	2	T1		
	Total periods required:	12			
	UNIT-III:Reactive p	ower coord	ination		
13	Reactive power coordination objective	1	T1		
14	Mathematical modeling	1	T1		
15	Operation planning and transmission benefits	2	T 1		
16	Basic concepts of quality of power supply	1	T1		
17	Disturbances and steady – state variations	2	T1		
18	Effects of under voltages and frequency	1	T1		
19	Harmonics, radio frequency and electromagnetic interferences	2	T1		
	Total periods required:	10	1	1	

	UNIT-IV: Reactive p	ower Mana	gement		
20	Demand side management and Load patterns	1	T2		
21	Basic methods of load shaping	2	T2		
22	Power tariffs	1	T2		
23	KVAR based tariffs, penalties for voltage flickers and harmonic voltage levels	1	T2	Calculation of Energy	
24	Distribution side Management, System losses	2	T2	bill for domestic and Industrial sectors –	
25	Loss reduction methods - examples	1	T2	- case study	
26	Reactive power planning: objectives	2	T2		
27	Economic Planning, Capacitor placement	1	T2		
28	Retrofitting of capacitor banks	1	T2		
Total periods required: 12					
	UNIT-V: Reactive power management	nt in Dome	stic &Indus	strial Sectors	
29	KVAR requirements for domestic appliances	1	T2	Reactive power control equipment in a	
30	Purpose of using capacitors and selection of capacitors	1	T2	distribution substation and their ratings	
31	Deciding factors, types of available capacitor, characteristics and Limitations	2	T2		
32	Typical layout of traction systems and reactive power control requirements	2	T2		
33	Distribution transformers and Electric arc furnaces	2	T2		
34	Reactive power control in Textile and Plastic industries	2	T2		
35	Furnace transformer, filter requirements and remedial measures	1	T2		
36	Power factor of an arc furnace	1	T2		
Total periods required: 12					
Grand total periods required: 56					

T1. T.J.E.Miller, Reactive power control in Electric power systems, John Wiley and Sons, 1982

T2. D.M. Tagare, *Reactive power Management*, Tata McGraw-Hill Publishing Company Ltd., New Delhi, 2004.

Signature of the faculty Member framing the syllabus

(Autonomous) ^{musi} Sree Sainath Nagar, A. Rangampet-517 102 <u>Department of Electrical and Electronics Engineering</u>

Name of the Subject	:Resea
rame of the Subject	

:Research Methodology

Class& Semester

:M. Tech. (EPS) – I Semester

Nameof the faculty Member

:Dr. S. Farook

S. No.	Торіс	No. of periods required	Book(s) followed	Topics for self study
	Unit-I: Introduction to Re		nodology	
1.	Research objective and Motivation	1	T1	Problems
2.	Types of Research –Descriptive vs Analytical, Applied vs Fundamental, Quantitative vs Qualitative, Conceptual vs Empirical	1	T1	encountered by researchers.
3.	Research Approaches	1	T1	-
<u> </u>	Research and Scientific Methods	1	T1	-
<u>4.</u> 5.	Research Process	2	T1	-
6.	Criteria of Good Research	1	T1	-
0.	Total of periods required:	7		
	Unit-II: Research Prot		sian	
7.	What is Research Problem?	1	T1	Experimental
8.	Selecting the Problem	1	T1	designs. Developing
9.	Necessity of Defining the Problem	1	T1	research plan.
10.	Techniques involved in Defining a Problem	2	T1	-
11.	What is Research Design? Its need and features	1	T1	
12.	Important concepts of Research Design	1	T1	
13.	Designing Methods: Research design in case of exploratory research studies, Research design in case of descriptive and diagnostic research studies, Research design in case of hypothesis-testing research studies	2	T1	
	Total of periods required:	9		
	Unit-III: Data Collection, An	alysis, and l	Hypothesis	•
14.	Collection of Primary Data: Observation Method, Interview Method, Questionnaires, Schedules, Other Methods	1	T1	Guidelines for constructing questionnaires and interviews.
15.	Collection of Secondary Data	1	T1	
16.	Selection of Appropriate Method for Data Collection	1	T1	
17.	Processing Operations: Editing, Coding, Classification and Tabulation	2	T1	
18.	Types of Analysis	1	T1	
19.	What is Hypothesis? Basic Concepts of Testing Hypothesis: Null hypothesis and alternative hypothesis, Level of significance, Decision rule, Type I and Type II errors, Two-tailed and One-tailed tests	2	Τ1	
20.	Hypothesis Testing Procedure	1	T1	
	Total of periods required:	9		

	Unit-IV: Statistics	in Researc	h	
21.	Review of Statistical Techniques: Mean,	1	T1	Simple regression
	Median, Mode			analysis.
22.	Geometric Mean, Harmonic Mean, Variance,	1	T1	
	Standard Deviation			
23.	Measure of Asymmetry	1	T1	
24.	Normal Distribution	2		
25.	Chi-Square as a Test for Comparing Variance	1	T1	
26.	Steps Involved in Applying Chi-Square Test	1	T1	
27.	Problems	2		
	Total of periods required:	9		
	Unit-V: Interpretation a	nd Report	Writing	
28.	Interpretation: Meaning, Importance	1	T1	Mechanics of writing
29.	Interpretation: Techniques and Precautions	1	T1	research report.
30.	Report Writing: Significance and Different	2	T1	
	Steps			
31.	Types of Reports	1	T1	
32.	Precautions in Report Writing	1	T1	
	Total of periods required:	6		
	Grand total of periods required:	40		

T1. C.R. Kothari, *Research Methodology: Methods and Techniques*, New Age International Publishers, New Delhi, 2nd Revised Edition, 2004.

REFERENCES:

- R1. Ranjit Kumar, *Research Methodology: A step-by-step guide for beginners*, Sage South Asia, 3rd ed., 2011.
- R2. R. Panneerselvam, Research Methodology, PHI learning Pvt. Ltd., 2009

Signature of the faculty Member framing the syllabus