(Autonomous)

Sree Sainath Nagar, A. Rangampet-517 102

Department of Electronics and communication Engineering

Lesson Plan

Name of the Subject: Adaptive Signal Processing (14MT26101) Class & Semester: M. Tech. (CMS) – II Semester Name of the faculty Member: Mr T.Ravisekhar

S.	Торіс	No. of	Book(s)	Topics for self study
No.		periods	followed	
UN	T - I: INTRODUCTION TO ADAPTIVE SY	YSTEMS& [DEVELOPMI	ENT OF ADAPTIVE
	FILTER T	HEORY	I	
1.	Definitions, Characteristics,	1	T2	Hermittan Matrix
	Applications, Example of an Adaptive			Properties
	System			
2.	The Adaptive Linear Combiner	1	T2	
3.	Weight Vectors, Desired Response Performance function	1	T2	
4.	Gradient & Mean Square Error	1	T2	
5.	Introduction to Filtering, Smoothing and Prediction, Problem statement	2	T1	
6.	Linear Optimum Filtering	1	T1	
7.	Principle of Orthogonality - Minimum Mean Square Error	1	T1	
8.	Wiener- Hopf equations	1	T1	
9.	Error Performance - Minimum Mean Square Error	1	T1	
	Total periods required:	10		
	UNIT - II: SEARCHING THE PERFORMAN	ICE SURFA	CE & STEE	PEST DESCENT
	ALGORI	THMS		
10.	Methods & Ideas of Gradient Search methods, & its Solution	2	T1	Three basic kinds of Estimation , linear
11.	Gradient Searching Algorithm	1	T1	optimum filters
12.	Stability & Rate of convergence	1	T1	
13.	Learning Curves	1	T1	
14.	Gradient Search by Newton's Method	1	T1	
15.	Method of Steepest Descent	1	T1	
16.	Comparison of Learning Curves	1	T1	
	Total periods required:	8		
	UNIT -III: LMS& RL	S ALGORI	THMS	
17.	Overview - LMS Adaptation algorithms	1	T1	Characterization of the Autoregressive
18.	Stability & Performance analysis of LMS	2	T1	2.00000
19.	LMS Gradient & Stochastic algorithms	1	T1	
20.	Noise cancellation, Cancellation of		T2	

	Echoes in long distance telephone	2		
	circuits and Adaptive Beam forming	_		
21.	Matrix Inversion lemma, exponentially		T2	
	weighted recursive least square	2		
	algorithm			
22.	update recursion for the sum of	2	T2	
	weighted error squares	2		_
23.	convergence analysis of RLS Algorithm	2	<u>T2</u>	_
24.	Application of RLS algorithm on	1	12	
		12		
	<u>UNIT – IV· KAI MAN FII TERING& NO</u>			
25	Introduction Recursive Mean Square	2		Regularization
20.	Estimation Pandom variables	2	12	Recursive
				computation of time
26.	The Innovations Process	1	T2	average correlation
27	Estimation of the state using the	2	T2	matrix,
27.	Innovations Process	-		
28.	Filtering	1	T2	-
	1			
29.	Initial conditions	1	T2	
				_
30.	Variants of Kalman filtering	2	T2	
0.1	Direct Descence better			_
31.	Blind Deconvolution	1	12	
32	Buss Gang Algorithm for blind	2	Т2	_
52.	Equalization	2	12	
	Total periods required:	12		
	UNIT – V: ORDER-RECURSI	VE ADAP	FIVE FILT	ERS
33.	Gradient-Adaptive Lattice Filter	2	T2	Sato Algorithm,
	1			Godard Algorithm
34.	order-recursive adaptive filters using	1	T2	
	least square estimation			Research Topics:
	least square estimation			
35.	adaptive forward linear prediction	2	Т2	Nonlinear System
00.	adaptive backward linear prediction	-		Identification, Signal and
36	conversion factor least-square lattice	2	Т2	Information Processing
	predictor	2	12	C C
27	angle normalized astimation arrors	1	ТЭ	EEG
20	first order state grace models for lattice	1		_
30.	first order state space models for fattice	I	12	Bio-acoustics and sonar
39.	QR-Decomposition-Based Least-Squares	3	12	Secure signal processing
	Lattice Filters, Recursive Least-Squares			
	lattice Filters Using a Posteriori			
	Estimation Errors			
	Total periods required:	12		1
	Grand total periods required:	55		

TEXT BOOKS:

- T1. Bernard Widrow, Samuel D. Strearns, Adaptive Signal Processing, PE, 1985.
- T2. Simon Haykin, *Adaptive Filter Theory*, 4th Edition, PE Asia, 2002.

REFERENCE BOOKS:

- R1. Alexander D Poularikas & zayed m Ramadan, CRC, *Adaptive Filtering Primer with MATLAB*, Taylor & Francis group.
- R2. Sophocles. J. Orfamadis, *Optimum signal processing: An introduction*, 2nd Edition, McGraw-Hill, Newyork, 1988.

Signature of the faculty Member framing the syllabus

(Autonomous)

Sree Sainath Nagar, A. Rangampet-517 102

Department of Electronics and Communication Engineering

Lesson Plan

Name of the Subject: Detection and Estimation of Signals (14MT23806) Class & Semester: M. Tech. (CMS) – II Semester Name of the faculty Member: Ms. H.D.Praveena

S. No.	Торіс	No. of	Book(s)	Topics for self study
-	LINIT I Dat	periods	lollowed	
1	Maximum likelihood desision aritarian		г у Т1	Novmon Doorson
1.	Maximum-fikelihood decision criterion	1	11	Neyman-Pearson
2	Norman Dearson aritarian	2	т1	criterion for Radar
۷.	Neyman-Pearson criterion	2	11	detection of variable
2	Duch chility of suman aritarian	2	T1	amplitude signals,
5.	Probability-of-error criterion	2	11	Conditional Probability
1	D 1 4 1	1	T1	density function, Bayes'
4.	Bayes risk criterion	1	11	Theorem, Q Function.
		1	T 1	-
5.	Min-max criterion	1	11	
				-
6.	Receiver operating characteristics	2	TI	
7.	Problems	3	T1	
	Total periods required:	12		
	UNIT – II: Binary Decisio	ns: Multiple	Observation	S
8.	Vector observations	2	T1	Properties of Gaussian
				Probability density
9.	The general Gaussian problem	2	T1	function, Concept of
				Convolution, Whitening
10.	Waveform Observation in Additive	1	T1	Process.
	Gaussian Noise	1		
11.	The Integrating Optimum Receiver	2	T1	
12.	Matched Filter Receiver	2	T1	
		-		
13.	problems	2	T1	
	problems	2		
	Total periods required:	11		
	UNIT -III: Esti	imation Theo	rv	
14.	Maximum likelihood estimation	1	T1	Mean & Median of
	With Michinobu estimation	1		Conditional Probability
15.	Bayes estimation criterion: Mean Square		T1	density function
10.	Error Criterion	1		Aultinle persector
	Error Criterion			Multiple parameter
1.0				Estimation, Sequential
16.	Uniform Cost Function	1	11	Estimation.
17.	Absolute-Value Cost Function	1	T1	

18.	Linear Minimum-Variance Method	2	T1	
19.	Least-Squares Method	1	T1	
20.	Estimation in the presence of Gaussian noise	1	T1	
21.	Linear observation	1	T1	-
22.	Non-linear estimation	2	T1	
23.	problems	1	T1	
	Total periods required:	12		
	UNIT – IV: Proper	rties Of Esti	mators	
24.	Bias	1	T1	Performance evaluation of Estimators when
25.	Efficiency	2	T1	imperfect source and
26.	Cramer-Rao bound	2	T1	channel models are used.
27.	Asymptotic properties	1	T1	
28.	Sensitivity and error analysis	1	T1	
29.	Problems	1	T1	-
	Total periods required:	08		
	UNIT – V: State Estimation & St	tatistical Est	imation of Pa	rameters
30.	State Estimation: Prediction	2	T1	Binomial, Poisson, Uniform Gaussian
31.	Kalman filter	2	T1	Exponential, Rayleigh
32.	Problems	2	T2	Research topics:
33.	Statistical Estimation of Parameters: Concept of sufficient statistics	1	R2	Extended Kalman filter, Super resolution Array Processing.
34.	Exponential families of Distributions	1	R2	
35.	Exponential families and Maximum likelihood estimation	2	R2	
36.	Uniformly minimum-variance unbiased estimation	1	R2	
	Total periods required:	11	1	
	Grand total periods required:	54		

T1: James L.Melsa & David L.Cohn, "Decision and Estimation Theory", McGraw Hill, 1978.

T2: Steven M. Kay, "Fundamentals of Statistical Signal Processing Vol. 1: Estimation Theory, Prentice Hall, 1993, Vol. 2: Detection Theory," Prentice Hall Inc. 1998

1993, Vol. 2: Detection Theory", Prentice Hall Inc., 1998.

Reference Books:

- R1: Harry L. Van Trees, "Detection, Estimation and Modulation Theory", Part 1, John Wiley & Sons Inc. 1968.
- R2: Jerry M. Mendel, "Lessons in Estimation Theory for Signal Processing, Communication and Control", Prentice Hall Inc., 1995.
- R3: Sophocles J.Orfanidis, "Optimum Signal Processing", McGraw Hill, 2nd edition, 1988.

Signature of the faculty Member framing the syllabus

(Autonomous)

Sree Sainath Nagar, A. Rangampet-517 102

Department of Electronics and communication Engineering

Lesson Plan

Name of the Subject: EMI/EMC (14MT26103) Class & Semester: M. Tech. (CMS) – II Semester Name of the faculty Member: A.Nagaraju

S.No	Topic	No. of	Book(s)	Topics for self study
LINITT I	. Introduction and Sources of FMI and Nanid	perious	10110Wed	anonta
	: Introduction and Sources of EMI and Nonio		or of Comp	onents
1.	Concepts and Definition of EWI and EWIC	1	11	Non ideal behaviour
2	Noticel and man made EMI sources	2	TT1	of Forromagnetic
۷.	Natural and man-made Elvir sources	3	11	Materiala Esprito
				Roads
				Electromachanical
3.	Non-ideal behaviour of components-Wires,	3	12	Deviees
	printed circuit board (PCB) lands, effect of			Devices
	component leads			
4.	Non ideal behaviour of resistors, capacitors,	3	T2	
	inductors			
Total p	eriods required	10		
UNIT-I	I: EMI/EMC Standards and Open Area Test	Sites	•	
5.	Introduction - Standards for EMI/EMC,	2	T1	
	MIL, STD 461 /462, IEEE/AXSI Standards,			
	CISPR/IEC Standards, FCC regulations			
6.	open area test site measurements	1	T1	
7.	Measurement precautions ,open area test site	2	T1	
8.	Terrain Roughness, Normalized Site	2	T1	
	Attenuation,			
9.	Measurement of test site imperfections	2	T1	
10.	Antenna factor measurement, Measurement	1	T1	
	errors			
Total p	eriods required	10		
UNIT-I	II: Radiated Interference and Conducted Inte	erference N	/leasuremen	nts
11.	Anechoic chamber	2	T1	Crosstalk
12.	Transverse Electromagnetic Cell	2	T1	
13.	Reverberating chamber	1	T1	
14.	Giga-Hertz TEM Cell	1	T1	
15	Comparison of test facilities	1	Т1	4
13.	Comparison of conduction	1	T1	4
10.	currents/voltages	1	11	
17	Conducted EM noise on newer supply lines	1	Т1	4
17.	Conducted ENI noise on power supply lines	1	11	

18.	Conducted EMI from equipment	1	T1	
19.	Immunity to conducted EMI, Detectors and measurement	1	T1	_
Total p	eriods required	11		
UNIT –	IV: Grounding, Shielding and Bonding			
20.	Principles and Practice of Earthing	2	T1	
21.	Precautions in Earthing, Measurements of ground resistance	2	T1	
22.	System grounding for EMC, Cable shield Grounding	1	T1	
23.	Shielding Theory and Effectiveness, ,	2	T1	
24.	Shielding Materials, Shielding Integrity at discontinuities	2	T1	
25.	Conductive coatings, Cable shielding, Shielding Effectiveness measurements	2	T1	
26.	Electrical Bonding.	2	T1	
Total p	eriods required	13	•	-
UNIT -	V: EMC Filters, Cables, Connectors and Con	nponent	s	
27.	Characteristics and Types of Filters	3	T1	Research Topic: New methods for calculating
28.	Power Line filter Design - Common mode filter, Differential mode filter, Combined CM and DM filter	1	T1	attenuation, Shielding effectiveness measurement
29.	EMI suppression cables	2	T1	techniques, EMI Noise filters
30.	EMC connectors	2	T1	
31.	Knitted WireMesh Gaskets, Wire Screen Gaskets, Oriented Wire mesh, Conductive Elastomer, Transparent Conductive windows, Conductive Adhesive, Conductive Grease. Conductive Coatings.	1	T1	
32.	Isolation transformers. Opto Isolators.	1	T1	
Total p	eriods required	10		
Grand	total periods required:	54		

- T1: V.Prasad Kodali, "Engineering Electromagnetic Compatibility", S.Chand & company Ltd., 1st edition, 2000.
- T2: Clayton R. Paul, "Introduction to Electromagnetic Compatibility", John Wiley and Sons, 2nd edition, 2008.

Reference books

R1: Christos Christopoulos, "Principles and Techniques of Electromagnetic Compatibility", CRC Press (Taylor & Francis Group) 2nd edition, 2007.

Signature of the faculty Member framing the syllabus

Signature of the Chairman (BOS)

SREE VIDYANIKETHAN ENGINEERING COLLEGE (Autonomous) Sree Sainath Nagar, A. Rangampet-517 102

Department of Electronics and communication Engineering

Lesson Plan

Name of the Subject: Information Theory and Coding Techniques (14MT23802) Class & Semester: M. Tech. (CMS) – I Semester Name of the faculty Member: P.Padmaja

S.	Торіс	No. of	Book(s)	Topics for self study
No.		periods	followed	
	UNIT – I: INTRO	DUCTION	I	
1.	Entropy: Discrete stationary sources,	2	T1	
	Markov sources			
2.	Entropy of a discrete Random variable-	2	T1	
	Joint, conditional, relative entropy.	_		
	Mutual Information and conditional			
	mutual information			
3.	Chain rules for entropy, relative entropy	1	T1	The entropy power
	and mutual Information			inequality and the
4.	Differential Entropy - Joint, relative,	1	T1	Brunn–Minkowski
	conditional differential entropy and			Inequality, Lempel-Ziv
	Mutual information			coding, Arithmetic
5.	Loss less Source coding: Uniquely	1	T1	coding.
	decodable codes			
6.	Instantaneous codes	1	T1	
7.	Kraft's inequality	1	T1	
8.	Optimal codes	1	T1	
9.	Huffman code	1	T1	
10.	Shannon's Source Coding Theorem	1	T1	
	Total periods required:	12		
	UNIT –II: CHANN	NEL CAPA	CITY	
11.	Capacity computation for some simple channels	1	T1	
12	Channel Coding Theorem	1	T1	
12.	Fano's inequality and the converse to the	1	T1	
10.	Coding Theorem,			
14.	Equality in the converse to the coding	1	T1	
	theorem			
15.	The joint source Channel Coding	1	T1	
	Theorem			Rate distortion
16.	The Gaussian channels- Capacity	2	T1	

	calculation for Band limited Gaussian			Theory, Arimoto- Blabut algorithm
17.	Parallel Gaussian Channels	2	T1	
18.	Capacity of channels with colored	1		
10.	Gaussian noise	·		
	Total periods required:	10		
	UNIT -III: CHAN	NEL CODI	NG-1	
19.	Linear Block Codes: Introduction to Linear block codes	1	T2	
20.	Generator Matrix	1	T2	
21.	Systematic Linear Block codes	1	T2	Fror probability after
22.	Encoder Implementation of Linear Block Codes	1	T2	decoding, Structured
23.	Parity Check Matrix	1	T2	the Standard Array.
24.	Syndrome testing	1	T2	
25.	Error Detecting and correcting capability of Linear Block codes	1	T2	_
26.	Application of Block codes for error control in data storage Systems	1	T2	
	Total periods required:	08		
	UNIT – IV: CHANNE	L CODIN(G-2	
27.	Cyclic Codes: Algebraic Structure of Cyclic Codes	1	T2	
	,			
28.	Binary Cyclic Code Properties	1	T2	Trellis-Coded
28. 29.	Binary Cyclic Code Properties Encoding in Systematic Form ,Systematic Encoding with an (n - k)-Stage Shift Register	1	T2 T2	Trellis-Coded Modulation-The Idea Behind Trellis-Coded Modulation (TCM),
28. 29. 30.	Binary Cyclic Code Properties Encoding in Systematic Form ,Systematic Encoding with an (n - k)-Stage Shift Register Error Detection with an (n - k)-Stage Shift Register	1 1 1	T2 T2 T2	Trellis-Coded Modulation-The Idea Behind Trellis-Coded Modulation (TCM), TCM Encoding, TCM Decoding,
28. 29. 30. 31.	Binary Cyclic Code Properties Encoding in Systematic Form ,Systematic Encoding with an (n - k)-Stage Shift Register Error Detection with an (n - k)-Stage Shift Register Well-Known Block Codes-Hamming Codes	1 1 1 1	T2 T2 T2 T2 T2 T2	Trellis-Coded Modulation-The Idea Behind Trellis-Coded Modulation (TCM), TCM Encoding, TCM Decoding.
28. 29. 30. 31. 32.	Binary Cyclic Code PropertiesEncoding in Systematic Form ,SystematicEncoding with an (n - k)-Stage ShiftRegisterError Detection with an (n - k)-Stage ShiftRegisterWell-Known Block Codes-HammingCodesExtended Golay Code	1 1 1 1 1 1	T2 T2 T2 T2 T2 T2 T2	Trellis-Coded Modulation-The Idea Behind Trellis-Coded Modulation (TCM), TCM Encoding, TCM Decoding.
28. 29. 30. 31. 32. 33.	Binary Cyclic Code Properties Encoding in Systematic Form ,Systematic Encoding with an (n - k)-Stage Shift Register Error Detection with an (n - k)-Stage Shift Register Well-Known Block Codes-Hamming Codes Extended Golay Code BCH Codes	1 1 1 1 1 1 1	T2 T2 T2 T2 T2 T2 T2 T2 T2	Trellis-Coded Modulation-The Idea Behind Trellis-Coded Modulation (TCM), TCM Encoding, TCM Decoding.
28. 29. 30. 31. 32. 33. 34.	Binary Cyclic Code Properties Encoding in Systematic Form ,Systematic Encoding with an (n - k)-Stage Shift Register Error Detection with an (n - k)-Stage Shift Register Well-Known Block Codes-Hamming Codes Extended Golay Code BCH Codes Convolutional Codes: Convolution Encoding	1 1 1 1 1 1 1 1	T2 T2 T2 T2 T2 T2 T2 T2 T2 T2	Trellis-Coded Modulation-The Idea Behind Trellis-Coded Modulation (TCM), TCM Encoding, TCM Decoding.
28. 29. 30. 31. 32. 33. 34. 35.	Binary Cyclic Code PropertiesEncoding in Systematic Form ,SystematicEncoding with an (n - k)-Stage ShiftRegisterError Detection with an (n - k)-Stage ShiftRegisterWell-Known Block Codes-HammingCodesExtended Golay CodeBCH CodesConvolutional Codes: ConvolutionEncodingConvolutional Encoder Representation	1 1 1 1 1 1 1 1 1	T2 T2 T2 T2 T2 T2 T2 T2 T2 T2 T2 T2	Trellis-Coded Modulation-The Idea Behind Trellis-Coded Modulation (TCM), TCM Encoding, TCM Decoding.
28. 29. 30. 31. 32. 33. 34. 35. 36.	Binary Cyclic Code Properties Encoding in Systematic Form ,Systematic Encoding with an (n - k)-Stage Shift Register Error Detection with an (n - k)-Stage Shift Register Well-Known Block Codes-Hamming Codes Extended Golay Code BCH Codes Convolutional Codes: Convolution Encoding Convolutional Encoder Representation Formulation of the Convolutional Decoding Problem	1 1 1 1 1 1 1 1 1 1 1	T2 T2	Trellis-Coded Modulation-The Idea Behind Trellis-Coded Modulation (TCM), TCM Encoding, TCM Decoding.

38.	Sequential Decoding	1	T2					
39.	Feedback Decoding	1	T2					
40.	Application of Viterbi and sequential decoding.	1	T2					
	Total periods required: 14							
	UNIT – V: CHAN	NEL CODI	NG-3					
41.	Reed-Solomon Codes- Reed-Solom1on Error Probability	1	T2					
42.	Finite Fields, Reed-Solomon Encoding	1	T2					
43.	Reed-Solomon Decoding	1	T2					
44.	Interleaving and Concatenated Codes-	1	T2					
	Block Interleaving			Research Topics:				
45.	Convolutional Interleaving	1	T2	Applications of Reed				
46.	Concatenated Codes	1	T2	Solomon codes in				
47.	Coding and Interleaving Applied to the Compact Disc Digital Audio System- CIRC Encoding	1	Τ2	Deep space Telecommunications				
48.	CIRC Decoding	1	T2					
49.	Turbo Codes- Turbo Code Concepts	1	T2					
50.	Encoding with Recursive Systematic Codes	1	T2					
51.	A Feedback Decoder	1	T2					
52.	The MAP Decoding Algorithm	1	T2					
	Total periods required:	12						
	Grand Total periods required:	56						

T1: Thomas M. Cover and Joy A. Thomas, Elements of Information Theory, John Wiley & Sons, 1st Edition,1999.

T2: Bernard sklar, "Digital Communications – Fundamental and Application", Pearson Education, 2nd Edition, 2009.

Reference Books:

R1: John G. Proakis, "Digital Communications", Mc. Graw Hill Publication, 5th Edition, 2010. R2: SHU LIN and Daniel J. Costello, Jr., "Error Control Coding – Fundamentals and Applications", Prentice Hall, Second Edition, Prentice Hall, 2002.

R3: R. J. McEliece, The Theory of Information & Coding, Addison Wesley Publishing Co., 1977.

Signature of the faculty Member framing the syllabus

(Autonomous) Sree Sainath Nagar, A. Rangampet-517 102

Department of Electronics and communication Engineering

Lesson Plan

Name of the Subject: Radar Signal Processing (14MT26104) Class & Semester: M. Tech. (CMS) – II Semester Name of the faculty Member: Ms.G. Madhavilatha

S.	Торіс	No. of	Book(s)	Topics for self
No.		periods	followed	study
	UNIT – I: RANGE EQUATIO	N AND MATCI	HED FILTER	
1.	Introduction to Radar	1	Т3	System losses, Probability of
2.	Radar Block Diagram	1	Т3	detection and false
3.	Radar Equation, Information Available from Radar Echo	1	Т3	of radar
4.	Review of Radar Range Performance– General Radar Range Equation	1	T2	
5.	Radar Detection with Noise Jamming	1	T2	
6.	Beacon and Repeater Equations	1	T2	
7.	Bistatic Radar	1	T2	
8.	Matched Filter Receiver – Impulse Response	1	T1	
9.	Frequency Response Characteristic and its Derivation	1	T1	
10.	Matched Filter and Correlation Function	1	T1	
11.	Correlation Detection and Cross-Correlation Receiver	1	T1	
12.	Efficiency of Non-Matched Filters	1	T1	

13.	Matched Filter for Non-White Noise	1	T1	
	Total periods required:	13		
	UNIT - II: DETECTION OF RA	DAR SIGN	IALS IN NO	DI SE
14.	Detection Criteria – Neyman-Pearson Observer	1	T1	Integrators- Moving window, binary integration.
15.	Likelihood-Ratio Receiver, Inverse Probability Receiver	1	T1	
16.	Sequential Observer	1	T1	
17.	Detectors –Envelope Detector, Logarithmic Detector, I/Q Detector	2	T1	
18.	Automatic Detection - CFAR Receiver	1	T1	
19.	Cell Averaging CFAR Receiver	1	T1	
20.	CFAR Loss, CFAR Uses in Radar	1	T1	
21.	Schematics, Component Parts, Resources and Constraints	2	T1	
	Total periods required:	10	1	
	UNIT III: WAVEFO	RM SELECTIO	N	
22.	Radar Ambiguity Function and Ambiguity Diagram – Principles and Properties	2	T1	Weather clutter, sea clutter, other sources of atmospheric echoes
23.	Specific Cases – Ideal Case, Single Pulse of Sine Wave	1	T1	
24.	Periodic Pulse Train, Single Linear FM Pulse, Noise like Waveforms	1	T1	
25.	Waveform Design Requirements	1	T1	

26.	Introduction to clutter, surface clutter	2	T1	
27.	Land clutter	1	T1	
28.	Detection of targets in clutter	1	T1	-
	Total periods required:	09		
	UNIT IV: PULSE COMPRESS	SION IN RADA	R SIGNALS	
29.	Introduction, Significance, Types	1	T1	Factors affecting the
30.	Linear FM Pulse Compression – Block Diagram	1	T1	choice of pulse compression system
31.	Linear FM Pulse Compression – Characteristics	1	T1	
32.	Reduction of Time Side lobes, Stretch Techniques	2	T1	
33.	Generation and Decoding of FM Waveforms – Block Schematic and Characteristics of Passive System	1	T2	
34.	Digital Compression	1	Т3	
35.	SAW Pulse Compression	1	T3	
	Total periods required:	08	1	
	UNIT V: PHASE COD	ING TECHNIC	QUES	
36.	Principles, Binary Phase Coding	1	T2	Welti codes, variants of barker code
37.	Barker Codes	1	T2	comparison of pulse
38.	Maximal Length Sequences (MLS/LRS/PN)	1	T2	waveforms.
39.	Block Diagram of a Phase Coded CW Radar	1	T2	Research Topics:
40.	Poly phase codes- Frank Codes, Costas Codes	1	T1	Radars & Imaging
41.	Non-Linear FM Pulse Compression	1	T1	hadar s
42.	Doppler Tolerant PC Waveforms – Short Pulse	1	T1	

43.	Linear Period Modulation (LPM/HFM)	1	T1	
44.	Sidelobe Reduction for Phase Coded PC Signals	1	T1	
45.	Complementary Codes, Huffman Codes	1	T1	
46.	Limiting in Pulse Compression	1	T1	
47.	Cross-Correlation Properties, Compatibility	1	T1	
	Total periods required:	13	1	I
	Grand total periods required:	53		

TEXT BOOKS:

- T1. M.I. Skolnik, "Introduction to Radar Systems", TMH, 3rd Edition, 2001.
- T2. Fred E. Nathanson, "*Radar Design Principles Signal Processing and The Environment*", McGraw Hill, Inc, 2nd Edition, 1991.
- T3. M.I. Skolnik, Radar Handbook, McGraw Hill, 2nd Edition, 1991.

REFERENCE BOOKS:

R1. Peyton Z. Peebles Jr, "Radar Principles", John Wiley, 1998.

R2. R. Nit berg, Radar Signal Processing and Adaptive Systems, Artech House, 1999.

R3. F.E. Nathanson, Radar Design Principles, 1st Edition, McGraw Hill, 1969

Signature of the faculty Member Framing the syllabus

(Autonomous)

Sree Sainath Nagar, A. Rangampet-517 102

Department of Electronics and communication Engineering

<u>Lesson Plan</u>

Name of the Subject: Software Defined Radio (14MT26102) Class & Semester: M. Tech. (CMS) – II Semester Name of the faculty Member: Dr. V. R. Anitha

S. No.	Торіс	No. of periods	Book(s) followed	Topics for self study			
	UNIT – I: INTRODUCTION TO SOFTWARE RADIO CONCEPTS						
1.	The need for Software radios and its definition	1	T1				
2.	Characteristics and benefits of Software radio	1	T1				
3.	Design principles of a software radio.	1	T1				
4.	Radio Frequency Implementation Issues : Purpose of RF front – end	1	T1				
5.	Dynamic range	1	T1	Issues in spectrum			
6.	RF receiver front – end topologies	2	T1	sensing, Sensing			
7.	Enhanced flexibility of the RF chain with software radios, Importance of the components to overall performance	2	T1	interference limit			
8.	Transmitter architectures and their issues	1	T1				
9.	Noise and distortion in the RF chain	2	T1				
10.	ADC & DAC distortion, Pre-distortion	1	T1				
11.	Flexible RF systems using micro- electromechanical systems	1	T1				
	Total periods required:	14					
	UNIT – II: MULTIRATE SIG	NAL PROC	ESSING IN S	SDR			
12.	Sample rate conversion principles	2	T1	Digital filtering,			
13.	Polyphase filters	2	T1	spectral analysis,			
14.	Digital filter banks	2	T1	appled to digital			
15.	Timing recovery in digital receivers using multirate digital filters	2	T1	conversion			
	Total periods required:	08					
	UNIT -III: DIGITAL GEN	ERATION (OF SIGNALS	5			
16.	Introduction	1	T1				
17.	Comparison of direct digital synthesis with analog signal synthesis	1	T1	Cine altere and			
18.	Approaches to direct digital synthesis	2	T1	Modified Sine-phase Difference Algorithm			
19.	Analysis of spurious signals	2	T1	Approach			
20.	Spurious components due to periodic jitter	1	T1				
21.	Bandpass signal generation	1	T1				
22.	Performance of direct digital synthesis systems	1	T1				

23.	Hybrid DDS – PLL Systems	1	T1	
24.	Applications of direct digital synthesis	1	T1]
25.	Generation of random sequences	1	T1	
26.	ROM compression techniques	1	T1	
	Total periods required:	13		
	UNIT – IV: SMA	RT ANTENI	NAS	
27.	Introduction	1	T1	
28.	Vector channel modelling	1	T1	
29.	Benefits of smart antennas, Structures for beamforming systems	1	T1	
30.	Smart antenna algorithms	1	T1	
31.	Diversity and Space time adaptive signal processing	1	T1	Trade-offs in using DSPs, FPGAs, and
32.	Algorithms for transmit STAP	2	T1	ASICs
33.	Hardware implementation of smart antennas	1	T1	_
34.	Array calibration	1	T1	_
35.	Digital Hardware Choices - Key hardware elements	1	T1	
36.	DSP processors, FPGAs	2	T1	
37.	Power management issues	1		
	Total periods required:	13		
-				
1	UNIT – V: OBJECT ORIENTED REPRESE	NTATION	OF RADIOS	AND NETWORK
38.	UNIT – V: OBJECT ORIENTED REPRESE Networks, Object –oriented programming	NTATION 1	OF RADIOS T1	AND NETWORK
38. 39.	UNIT – V: OBJECT ORIENTED REPRESE Networks, Object –oriented programming Object brokers	NTATION (1 1	OF RADIOS T1 T1	AND NETWORK
38. 39. 40.	UNIT – V: OBJECT ORIENTED REPRESE Networks, Object –oriented programming Object brokers Mobile application environments	NTATION 1 1 1	OF RADIOS T1 T1 T1 T1	AND NETWORK
38. 39. 40. 41.	UNIT – V: OBJECT ORIENTED REPRESE Networks, Object –oriented programming Object brokers Mobile application environments Joint Tactical radio system.	NTATION (1 1 1 1	OF RADIOS T1 T1 T1 T1 T1 T1	AND NETWORK
38. 39. 40. 41. 42.	UNIT – V: OBJECT ORIENTED REPRESE Networks, Object –oriented programming Object brokers Mobile application environments Joint Tactical radio system. Case Studies in Software Radio Design: SPEAKeasy	NTATION (1 1 1 1 1 1	OF RADIOS T1 T1 T1 T1 T1 T1 T1	CHARIOT Research Topics :
38. 39. 40. 41. 42. 43.	UNIT – V: OBJECT ORIENTED REPRESE Networks, Object –oriented programming Object brokers Mobile application environments Joint Tactical radio system. Case Studies in Software Radio Design: SPEAKeasy JTRS , Brief introduction to Cognitive Networking.	NTATION (1 1 1 1 1 1 1 1	OF RADIOS T1	AND NETWORK CHARIOT Research Topics : Spectrum Sensing in Multichannel Networks, Spectrum
38. 39. 40. 41. 42. 43. 44.	UNIT – V: OBJECT ORIENTED REPRESE Networks, Object –oriented programming Object brokers Mobile application environments Joint Tactical radio system. Case Studies in Software Radio Design: SPEAKeasy JTRS , Brief introduction to Cognitive Networking. Wireless Information transfer system	NTATION (1 1 1 1 1 1 1 1 1 1	T1	CHARIOT CHARIOT Research Topics : Spectrum Sensing in Multichannel Networks, Spectrum management issues
38. 39. 40. 41. 42. 43. 43. 44.	UNIT – V: OBJECT ORIENTED REPRESE Networks, Object –oriented programming Object brokers Mobile application environments Joint Tactical radio system. Case Studies in Software Radio Design: SPEAKeasy JTRS , Brief introduction to Cognitive Networking. Wireless Information transfer system SDR-3000 digital transceiver subsystem	NTATION (1 1 1 1 1 1 1 1 1 1 1 1	DF RADIOS T1 T1 T1 T1 T1 T1 T1 T1 T1 T1	CHARIOT Research Topics : Spectrum Sensing in Multichannel Networks, Spectrum management issues
38. 39. 40. 41. 42. 43. 43. 44. 45. 46.	UNIT – V: OBJECT ORIENTED REPRESE Networks, Object –oriented programming Object brokers Mobile application environments Joint Tactical radio system. Case Studies in Software Radio Design: SPEAKeasy JTRS , Brief introduction to Cognitive Networking. Wireless Information transfer system SDR-3000 digital transceiver subsystem Spectrum Ware	NTATION (1 1 1 1 1 1 1 1 1 1 1 1 1	DF RADIOS T1 T1 T1 T1 T1 T1 T1 T1 T1 T1	CHARIOT CHARIOT Research Topics : Spectrum Sensing in Multichannel Networks, Spectrum management issues
38. 39. 40. 41. 42. 43. 43. 44. 45. 46. 47.	UNIT – V: OBJECT ORIENTED REPRESE Networks, Object –oriented programming Object brokers Mobile application environments Joint Tactical radio system. Case Studies in Software Radio Design: SPEAKeasy JTRS , Brief introduction to Cognitive Networking. Wireless Information transfer system SDR-3000 digital transceiver subsystem Spectrum Ware Brief introduction to Cognitive Networking	NTATION (1 1 1 1 1 1 1 1 1 1 1 1 1	OF RADIOS T1 T1	CHARIOT Research Topics : Spectrum Sensing in Multichannel Networks, Spectrum management issues
38. 39. 40. 41. 42. 43. 44. 45. 46. 47.	UNIT – V: OBJECT ORIENTED REPRESE Networks, Object –oriented programming Object brokers Mobile application environments Joint Tactical radio system. Case Studies in Software Radio Design: SPEAKeasy JTRS , Brief introduction to Cognitive Networking. Wireless Information transfer system SDR-3000 digital transceiver subsystem Spectrum Ware Brief introduction to Cognitive Networking Total periods required:	NTATION (1 1 1 1 1 1 1 1 1 1 1 1 1	OF RADIOS T1	CHARIOT Research Topics : Spectrum Sensing in Multichannel Networks, Spectrum management issues

- T1: Jeffrey Hugh Reed, "Software Radio: A Modern Approach to Radio Engineering," Prentice Hall Professional, 2002.
- T2: Paul Burns, "Software Defined Radio for 3G," Artech House, 2002.

Reference Books:

R1: Tony J Rouphael, "RF and DSP for SDR," Elsevier Newnes Press, 2008.R2: P. Kenington, "RF and Baseband Techniques for Software Defined Radio," Artech House, 2005.

Signature of the faculty Member framing the syllabus

Signature of the Chairman (BOS)

(Autonomous)

Sree Sainath Nagar, A. Rangampet-517 102

Department of Electronics and Communication Engineering

Lesson Plan

Name of the Subject: TELEMETRY AND TELECONTROL (14MT26105)

Name of the faculty Member: G. Guru Prasad

Class & Semester: M.Tech & II Semester

Specialization: CMS

S. No.	Торіс	No. of	Book(s)	Topics for self study
	T (D) () ()	periods	followed	
UNIT –	I: Telemetry Principles	1		1
1.	Introduction	1		comparators
2.	Functional blocks of Telemetry system	2	TI	-
3.	Classification of Telemetry systems	1	TI	-
4.	Non Electrical Telemetry systems	1	<u>T1</u>	-
5.	Electrical, Pneumatic Telemetry systems	l	TI	-
6.	Frequency Telemetry systems	1	<u>T1</u>	4
7.	Power Line Carrier Communication	1	T1	
	Total periods required:	08		
UNIT –	II: Symbols And Codes	-		1
8.	Bits and Symbols	1	T1	Manchester encoding
9.	Time function pulses	1	T1	_
10.	Line and Channel Coding	2	T1	_
11.	Modulation Codes	2	T1	
				-
12.	Intersymbol Interference	1	T1	
	Total periods required:	07		
UNITI	II: Frequency Division & Time Division Multi	iplxed Syster	ns	
13.	FDM system	1	TI	Phase locked loop
14.	IRIG Standard	1	T1	-
15.	FM Circuits using varactor diode	1	T1	
16.	FM Circuits using clap oscillator	1	T1	-
17.	Reactance variation type PM circuit	1	T1	-
18.	Transistor type PM circuit	1	T1	-
19.	PLL demodulator	1	T1	-
20.	TDM-PAM systems	1	T1	-
21.	PAM and PM systems	1	T1	-
22.	PCM reception	1	T1	-
23.	Differential PCM	1	T1	
24.	QAM Protocols	2	T1	
	Total periods required:	13		
UNIT I	V: Satellite & Optical Telemetry			
25.	General considerations	1	T1	FDMA, TDMA, CDMA
26.	TT&C Service	1	T1	

27.	Digital Transmission systems	2	T1	
28.	TT&C Subsystems	2	T1	-
29.	satellite Telemetry and Communications	1	T1	
30.	Optical fibers Cable – dispersion, losses	1	T1	
31.	connectors and splicers	1	T1	
32.	Sources and detectors	1	T1	
	Total periods required:	10		
UNIT V	7: Telecontrol Methods			
33.	Analog techniques in Telecontrol	2	T2	Research topics: Radio
34.	Digital techniques in Telecontrol	2	T2	telemetry and remote
35.	Remote adjustment	2	T2	control, long range
36.	Guidance and regulation	2	T2	closed loop telemetry.
37.	Telecontrol using information theory	2	T2	
38.	Example of a Telecontrol System	2	T2	
		12		
	Total periods required:	50		
	Grand total periods required:			

TEXT BOOKS:

- T1. D. Patranabis, Telemetry Principles, Tata McGraw-Hill, 1999
- T2. Swoboda G., Telecontrol Methods and Applications of Telemetry and Remote Control, Reinhold Publishing Corp., London, 1991

REFERENCES:

- R1. Gruenberg L., Handbook of Telemetry and Remote Control, McGraw Hill, New York, 1987.
- R2. Young R.E., Telemetry Engineering, Little Books Ltd., London, 1988.
- R3. Housley T.,Data Communication and Teleprocessing System, PH Intl., Englewood Cliffs, New Jersey, 1987.

Signature of the faculty Member framing the syllabus

(Autonomous)

Sree Sainath Nagar, A. Rangampet-517 102

Department of Electronics and Communication Engineering

Lesson Plan

Name of the Subject: Wireless Communications (14MT23805) Class & Semester: M. Tech. (DECS & CMS) – II Semester Name of the faculty Member: Dr. C. Subhas

S.	Торіс	No. of	Book(s)	Topics for self study			
No.		periods	followed				
UI	UNIT – 1: INTRODUCTION TO WIRELESS COMMUNICATION SYSTEMS AND						
	CELLULAR	CONCEPT	· 				
1.	Evolution of Mobile Radio	1	T1	Mobile radio systems			
	Communication Systems			around the world,			
2.	Examples of Wireless Communication	1	T1	WIAN Bluetooth and			
	Systems			PANs Handoff			
3.	Wireless Cellular Networks and	1	T1	strategies.			
	Standards – 1G						
4.	2G	1	T1				
5.	2.5G	1	T1				
6.	3G	1	T1				
7.	Frequency Reuse Concept	1	T1				
8.	Channel Assignment Strategies		T1				
9.	Interference and System Capacity	2	T1				
10.	Trunking and Grade of Service	1	T1				
11.	Improving Coverage and Capacity in	1	T1				
	Cellular Systems - cell splitting and						
	sectoring						
	Total periods required:	11					
	UNIT – II: MOBILE RA	DIO PROP	AGATION				
12.	Large Scale Path Loss: Introduction	1	T1	Simulation of Clarke's			
13.	Free Space Propagation Model		T1	and Jake's models.			
14.	Relating Power to Electric field	1	T1				
15.	Propagation Mechanisms – Reflection	2	T1				
16.	Diffraction and Scattering	1	T1				
17.	Practical Budget Design using Path Loss	1	T1				
	Models						
18.	Outdoor Propagation Models	1	T1				
19.	Indoor Propagation Models	1	T1				
20.	Small Scale Fading and Multinath	1	T1				
	Small Scale Multipath Propagation	-					
21.	Impulse Response Model of a Multipath	1	T1				
	Channel						
22	Small Scale Multinath Measurements	1	T1				
22.	Parameters of Mobile Channels	1	T1				
23.	Turnes of Small Scale Feding (all	1	T1				
24.	rypes of Sinan Scale Fauling (all						
25	Valiational Modela Clarks's Model for	1	T1				
25.	Siansticat Models – Clarke's Model for						
		1	+				
26.			Â				
	Total periods required:	15					

	UNIT -III: EQUALIZATION &	DIVERSI	FY TECHN	IQUES
27.	Equalization: Introduction, Survey of		T1	Fundamentals of
	Equalization Techniques			Equalization, Training
28.	Linear Equalizers – Linear Transversal		T1	a generic adaptive
	Equalizer	2		equalizer, Fractionally
29.	Non-linear Equalizers - Decision		T1	Spaced Equalizers.
	Feedback Equalizer (DFE)			
30.	Algorithms for Adaptive Equalization –		T1	
	Zero Forcing			
31.	LMS	2	T1	
32.	RLS		T1	
33.	Diversity Techniques : Realization of	1	T2	
	Independent Fading Paths			
34.	Receiver Diversity – System Model	1	T2	
35.	Selection Combining and Threshold	1	T2	
	Combining			
36.	Maximal Ratio Combining and Equal	1	T2	
	Gain Combining			
37.	Rake receiver	1	T1	
38.	Transmit Diversity-Channel known at	1	T2	
	Transmitter			
39.	Channel unknown at Transmitter – the	1	T2	
	Alamouti Scheme, analysis.			
	Total periods required:	11		
	UNIT – IV: MULTIPLE ACCESS T	ECHNIQU	ES & NET	WORKING
40.	Introduction to Multiple Access:	1	T1	FDD and TDD duplex
	FDMA, TDMA,			techniques, Capture
41.	CDMA and SDMA	1	T1	effect in packet radio,
42.	Packet Radio-Pure ALOHA, Slotted	1	T1	15DN, 557.
	ALOHA			
43.	CSMA, and reservation protocols.	1	T1	
44.	Capacity of Cellular Systems – Cellular	1	T1	
	CDMA			
45.	Introduction to Wireless Networking:	1	T2	
	Introduction to Wireless Networks			
46.	Differences between Wireless and Fixed	1	T2	
	Telephone Networks			
47.	Development of Wireless Networks	1	T2	
48.	Traffic Routing in Wireless Networks	2	T2	
49.	Wireless Data Services	1	T2	
50.	Common Channel Signaling	1	T2	
	Total periods required:	12		
	UNIT – V: MULTICAR	RIER MOD	ULATION	
51.	Data Transmission using Multiple	1	T2	Mitigation of
	Carriers			subcarrier fading,
52.	Multicarrier Modulation with	1	T2	IEEE 802.118 WLAN
	Overlapping Subchannels			study.
53.	Discrete Implementation of Multicarrier	1	T2	Research Topics:
	Modulation – DFT and its properties			MIMO wireless
54.	The Cyclic Prefix	1	T2	Systems, Cognitive
55.	Orthogonal Frequency Division	1	T2	Radio.
	Multiplexing (OFDM)			
56.	Matrix Representation of OFDM	1	T2	

57. Vector Coding	1	T2	
58. Challenges in Multicarrier Systems	1	T2	
Total periods required:	08		
Grand total periods required:	57		

*Handout will be given.

Text Books:

T1: T. S. Rappaport, "Wireless Communications, Principles and Practice," Prentice Hall, 2nd Edition, 2002.

T2: Andrea Goldsmith, "Wireless Communications," Cambridge University Press, 2005.

Reference Books:

R1: David Tse, PramodViswanath, "Fundamentals of Wireless Communications," University Press, 2006.

R2: Dr. Kamilo Feher, "Wireless Digital Communications," Prentice Hall, 1995.

Signature of the faculty Member framing the syllabus

(Autonomous)

Sree Sainath Nagar, A. Rangampet-517 102

Department of Electronics and communication Engineering

Lesson Plan

Name of the Subject: Wireless Sensor Networks (14MT257709) Class & Semester: M. Tech. (CMS) – II Semester Name of the faculty Member: Dr. V. R. Anitha

S. No	Торіс	No. of	Book(s) followed	Topics for self study
140.	UNIT – I: INTRODUCTION TO W	RELESS SI	ENSOR NET	WORKS
1	Challenges for wireless sensor networks	1	T1	
2.	Comparison of sensor network with ad hoc network	1	T1	
3. 4.	Single node architecture - Hardware components	2	T1	
5. 6.	Energy consumption of sensor nodes	2	T1	Security in Sensor
7.	Network architecture: Sensor network scenarios - types of sources and sinks	1	T1	networks
8.	Single hop versus multi-hop networks, multiple sinks and sources	1	T1	
9. 10. 11.	Design principles for wireless sensor networks	3	T1	
	Total periods required:	11		
	UNIT – II: PHYSI		2	
12.	Introduction, wireless channel and communication fundamentals	1	T1	
13.	Frequency allocation	1	T1	
14.	Modulation and demodulation	1	T1	
15.	Wave propagation effects and noise,	1	T1	
16.	Channels models	1	T1	
17.	Spread spectrum communication	1	T1	Localization, IEEE
18.	Packet transmission and synchronization	1	T1	802.15.4 low rate
19.	Quality of wireless channels and measures for improvement	1	T1	WPAN
20.	Physical layer and transceiver design consideration in wireless sensor networks - Energy usage profile	1	T1	
21.	Choice of modulation, Power			
22.	Management.	2	T1	
	Total periods required:	11	1	
	UNIT -III: DATA LINK LAYE	R		
23.	MAC protocols: fundamentals of wireless MAC protocols	2	T1	Practical
24.	Requirements and design constraints for wireless MAC protocols			implementation issues

25.	Important classes of MAC protocols,	1	T1	
26.	MAC protocols for wireless sensor networks	1	T1	
27.	Low duty cycle protocols and wakeup concepts	1	T1	
28.	Sparse topology and energy management (STEM)	1	T1	
29.	S-MAČ	1	T1	
30.	Wakeup radio concepts	1	T1	
31.	Contention-based protocols - CSMA protocols	1	T1	
32.	PAMAS	1	T1	
33.	Schedule-based protocols - SMAC, BMAC	1	T1	
34.	Traffic-adaptive medium access protocol (TRAMA)	1	T1	
35.	Link Layer protocols – fundamentals task and requirements	1	T1	
36.	Error control - Causes and characteristics of transmission errors, ARQ techniques,	1	T1	
37.	FEC techniques	1	T1	
38.	Hybrid schemes, Power control	1	T1	
	Total periods required:	16		
	UNIT – IV: NET	WORK LAY	ER	
	Gossiping and agent-based uni-cast			
39.	forwarding - Basic idea, Randomized forwarding, Energy-efficient unicast	1	T1	
40.	Broadcast and multicast - Source-based tree protocols	1	T1	
41.	Shared, core-based tree protocols, Mesh-based protocols	1	T1	
42.	Geographic routing - Basics of position- based routing	1	T1	
43.	Geocasting	1	T1	
44.	Mobile nodes - Mobile sinks, Mobile data collectors	1	T1	
45.	Mobile regions	1	T1	
46.	Data centric and content-based networking - Introduction	1	T1	
47.	Data-centric routing	1	T1	
48.	Data aggregation	1	T1	
	Total periods required:	10		
	UNIT – V: TRAN	SPORT LA	YER	
49.	The transport layer and QoS in wireless sensor networks - Quality of service/reliabilitym, Transport protocols	1	T1	Sensor Node Hardware- Node-level software platforms
50.	Coverage and deployment - Sensing models, Coverage measures	1	T1	standardization: IEEE 802.15.4 & IEEE
51.	Uniform random deployments: Poisson point processes, Coverage of random deployments: Boolean sensing model, general sensing model	2	T1	802.11 Research Topics: Node-level simulators Wireless Sensor

50	Coverage determination, Coverage of		T1	Networks
52.	grid deployments, Reliable data transport	1	T1	
53.	Single packet delivery - Using a single	1	T1	
-	path, Multiple paths, Multiple receivers			
	Congestion control and rate control -	1		
54.	Congestion situations in sensor networks	I		
	Mechanisms for congestion detection	1	T1	
55.	and handling	I		
56.	Protocols with rate control	1		
57.	The CODA congestion-control framework	1		
	Total periods required:	09		
	Grand total periods required:		Ę	57

T1: Holger Karl , Andreas willig "Protocol and Architecture for Wireless Sensor Networks", John wiley publication, Oct 2007.

Reference Books:

- R1: Feng zhao, Leonidas guibas, Elsivier, "Wireless Sensor Networks: an information processing approach –publication, 2004.
- R2: Edgar H .Callaway, First Edition,"Wireless Sensor Networks : Architecture and protocol", CRC press 2003.
- R3: C.S.Raghavendra Krishna, M.Sivalingam and Tarib znati, "Wireless Sensor Networks", Springer publication, 2006

Signature of the faculty Member framing the syllabus