(Autonomous)

Sree Sainath Nagar, A. Rangampet-517 102

Department of Electronics and communication Engineering

<u>Lesson Plan</u>

Name of the Subject: Advanced Digital Signal Processing, (14MT15706) Class & Semester: M. Tech.– I Semester, VLSI (Elective-I) & CMS Name of the faculty Member: Ms D Leela Rani

S. No	Торіс	No. of	Book(s)	Topics for self study
140.	UNIT – I: MULTIRATE FILTE	R BANKS	Tonowed	Sen Study
1.	Decimation	1	T1	Discrete Wavelet
2.	Interpolation	1	T1	Transform
3.	Sampling rate conversion by a rational factor I/D	1	T1	
4.	Multistage Implementation of sampling rate conversion.	1	T1	
5.	Digital Filter Banks : Two-Channel Quadrature-Mirror Filter Bank,	1	T1	
6.	Elimination of aliasing, condition for Perfect Reconstruction,	2	T1	
7.	Polyphase form of QMF bank,	2	T1	
8.	Linear phase FIR QMF bank, IIR QMF bank,	1	T1	
9.	Perfect Reconstruction Two-Channel FIR QMF Bank	2	T1	
	Total periods required:	12	•	
	UNIT II: NON-PARAMETRIC METHODS OF POWI	ER SPECT	FRAL EST	IMATION
10.	Estimation of spectra from finite duration observation of signals	2	T1	Correlation, Power
11.	Non-Parametric Methods: Bartlett, Welch methods.	2	T1	Spectrum and
12.	Blackmann & Tukey methods.	2	T1	its properties
13.	Performance Characteristics of Nonparametric Power Spectrum Estimators	2	T1	
14.	Computational Requirements of Nonparametric Power Spectrum Estimates	2	T1	
	Total periods required:	10		
	UNIT -III: PARAMETRIC METHODS OF POWER	SPECTRA	AL ESTIMA	TION
15.	Autocorrelation & Its Properties	2	T1	Stationary, Non-Stationary
16.	Relation between auto correlation and model parameters	2	T1	&Wide sense
17.	Yule-Walker & Burg Methods	2	T1	stationary
18.	MA model for power spectrum estimation	2	T1	processes
19.	ARMA model for power spectrum estimation	2	T1	1
	Total periods required:	10		
	UNIT – IV: DSP ALGORITHMS	1	T	
20.	Fast DFT algorithms based on Index mapping	2	T2	Composite FFT
21.	Sliding Discrete Fourier Transform	2	T2	
22.	DFT Computation Over a narrow Frequency Band	2	T2	
23.	Split Radix FFT	2	T2	

24.	Linear filtering approach to Computation of DFT using	2	T2	
	Chirp Z-Transform			
	Total periods required:	12		
	UNIT – V: APPLICATIONS OF DIGITAL SI	GNAL PR	OCESSING	
25.	Digital cellular mobile telephony	1	R1	Subband
26.	Adaptive telephone echo cancellation	1	R1	speech and
27.	High quality A/D conversion for digital Audio	2	R1	audio signals.
28.	Efficient D/A conversion in compact hi-fi systems	2	R1	spectral
29.	Acquisition of high quality data	1	R1	analysis of
30.	Multirate narrow band digital filtering	2	R1	random
31.	High resolution narrowband spectral analysis	2	R1	signals.
				Research
				Topics:
				Methods to
				Minimize
				Finite Word
				Length Effect,
				Wavelets in
				Digital Filter
				Banks.
				Multirate
				signal
				Processing
	Total periods required:	11		
	Grand total periods required:	55		

T1. John G. Proakis, Dimitris G. Manolakis, *Digital signal processing, principles, Algorithms and applications,* Prentice Hall, 4th Edition, 2007.

T2. Sanjit K Mitra, "*Digital signal processing, A computer base approach*", McGraw-Hill Higher Education, 4th Edition, 2011.

REFERENCE BOOKS:

R1. Emmanuel C Ifeacher Barrie. W. Jervis, "DSP - A Practical Approach", Pearson Education, 2nd Edition, 2002.

R2. A.V. Oppenheim and R.W. Schaffer, "Discrete Time Signal Processing", PHI, 2nd Edition, 2006.

Signature of the faculty Member framing the syllabus

(Autonomous)

SreeSainath Nagar, A. Rangampet-517 102

DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING

Lesson Plan

Name of the Subject: COMPUTER NETWORKS(14MT13805) Name(s) of the faculty Member(s) framing syllabus: Mr. R. Nagendra

Class & Semester: M. Tech I SEM. (DECS & CMS)

S.	Topic	No. of	Book(s)	Topics for Self
No.	Торіс	periods	followed	Study
Unit I:	Introduction to Computer Networks		1	
1.	Data communications & Networking for	1	T1	Client – Server
	Today's Enterprise			model, Network
2.	Data Communications	1	T1	components,
3.	Network Edge	1	Т3	Network
4.	Network core	1	Т3	standards and
5.	Internet	1	T1	protocols.
6.	OSI Reference model	1	T1	
7.	TCP/IP models	1	T1	
8.	HDLC	2	T1, T2	
9.	Point to Point Protocol (PPP)	2	T1, T2	
	Total periods required:	11		
Unit II	: Wired & Wireless LANs			
10.	Ethernet	1	T2	Multiple Access
11.	FastEthernet	1	T2	protocols
12.	Gigabit Ethernet	1		
13.	WLANS – Architecture and Services,	1	T1	
	Applications			
14.	IEEE 802.11 WLAN Standard – Physical Layer	1	T1	
15.	MAC Layer, Frame structure	1	T1, T3	
16.	IEEE 802.11 a, b, g, e and n standards	1	T1	
17.	Bluetooth	2	T2	
18.	WiMax features	1	T1	
19.	standards, protocols and utility	1	T1	
20.	Virtual LANs	1	T1	
	Total periods required:	12		
Unit II	I: Advanced Network Architectures			
21.	Circuit switching network - SONET/SDH	2	T1	N-ISDN & B-
22.	Virtual Circuit Networks – Frame Relay	2	T1	ISDN Networks,
23.	ATM architectures and services	1	T1	X.25.
24.	ATM Layer	1	T1	
25.	ATM Adaptation Layer	1	T1	
26.	Signaling Protocols – MPLS	1	T1	
27.	RSVP	1	T1	
28.	VPN architecture	1	T2	

S.	Topic	No. of	Book(s)	Topics for Self
No.	Торіс	periods	followed	Study
29.	IP over ATM	1	T1, T2	
30.	Repeaters& Bridges	1	T2	
31.	Routers & Gateways	1	T2	
	Total periods required:	13		
Unit IV	/:			
32.	IPv6 protocol	1	T1, T2	Internet protocol
33.	ТСР	1	T1, T2	IPV4, P2P file
34.	UDP	1		sharing,
35.	Congestion control in TCP	1	T1, T2	Congestion
36.	Socket programing with TCP and UDP	1	Т3	control in circuit
37.	Web and HTTP	2	Т3	switching
38.	FTP	1	Т3	networks,
39.	Simple Mail Transfer Protocol	1	Т3	Congestion
40.	Domain Name System	1	Т3	Control in ATM
41.	Multimedia Applications – RTP	1	T1, T3	
42.	Voice Over IP.	1	T1, T2	
	Total periods required:	12		
Unit V:	Security in Computer Networks			
43.	Simple Network Management Protocol	1	T2	Routing
44.	Network security	1	Т3	algorithms in
45.	Cryptography – Symmetric Key Cryptography	1	Т3	ATM/ TCP
46.	Public Key Encryption	1	Т3	networks
47.	Firewalls – Packet filtering	1	Т3	
48.	Application Gateway	1	Т3	
49.	Digital Signature	1	T2	
50.	IP Sec.	1	T2	
	Total periods required:	08		
	Grand total periods required:	56		

- T1. William Stallings, "Data and Computer Communication", 9th edition, Prentice hall, 2010
- T2. Behrouz A. Forouzan, "Data Communications and Networking", 4th Ed, Tata McGraw-Hill, New Delhi, 2006
- T3. Jim Kurose, Keith Ross, "Computer Networking: A Top Down Approach", 4th edition, Addison Wesley, July 2007.

REFERENCE BOOKS:

- R1. Andrew S. Tanenbaum "Computer Networks", 4th Edition, Pearson Education, 2008
- R2. LEON-GARCIA, INDRA WIDJAJA, "Communication Networks Fundamental concepts and Key architectures", TMH, 2000

Signature(s) of the faculty Member(s) framing the syllabus

(Autonomous)

Sree Sainath Nagar, A. Rangampet-517 102

Department of Electronics and communication Engineering

Lesson Plan

Name of the Subject: DIGITAL COMMUNICATION TECHNIQUES (14MT13802) Class & Semester: M. Tech (DECS & CMS) – I Semester Name of the faculty Member: M. Sivasubramanyam

S. No.	Торіс	No. of periods	Book(s) followed	Topics for self study
	UNIT – I: Characterization Of Com	munication	Signals And	Systems
1.	Review of Random Variables and Processes	4	T1	Representation of Band-
2.	Representation of Band-Pass Signals	1	T1	Pass Stationary Stochastic
-	Representation of Linear Band-Pass System,			Processes, Representation
3.	Response of a Band-Pass System to a Band-Pass	1	T1	of Biorthogonal Signals,
	Signal			Simplex Signals and Signal
4	Signal Space Representations – Vector Space	1	Т1	waveforms from binary
4.	Concepts, Signal Space Concepts	1	11	codes
5.	Orthogonal Expansion of Signals	2	T1	
6	Representation of PAM Signals, Phase Modulated	1	Т1	
0.	Signals	1	11	
	Representation of QAM Signals,			
7.	Multidimensional Signals, Orthogonal	1	T1	
	Multidimensional Signals			
8	Representation of Multidimensional Signals and	1	Т1	
0.	Orthogonal Multidimensional Signals	1	11	
9.	Power Spectra of Linearly Modulated Signals	2	T1	
	Total periods required:	10		
	UNIT – II: Digital Mo	dulation Tec	hniques	
10	Factors that Influence digital modulation	1	<u>т</u> э	Raised Cosine Roll off
10.	techniques	1	12	Filter, Gaussian Pulse-
11	Bandwidth and Power Spectral Density of Digital	1	т2	Shaping Filter, BFSK, M-
11.	Signals	1	12	ary FSK and OFDM.
12	Linear Modulation Techniques–Introduction,	1	т2	
12.	BPSK	1	12	
13.	DPSK	1	T2	
14.	QPSK	1	T2	
15.	OQPSK,	1	T2	
16.	∏/4 QPSK	1	T2	
17	Constant envelope Modulation Techniques –	1	T 2	
17.	Introduction, MSK	1	12	
18.	GMSK	1	T2	
	Combined Linear and constant envelope			
19.	modulation techniques –	1	T2	
	M-ary PSK			
20.	M- ary QAM	1	T2	
	Total periods required:	11		
	UNIT -III: Optimum Receivers For A	Additive Gau	ussian Noise	Channels
-	Optimum receiver for signals corrupted by			Probability of M-ary
21.	AWGN – Correlation Demodulator	1	TI	Biorthogonal Signals,
22.	Matched Filter Demodulator	1	T1	Simplex Signals and M-ary
23	Optimum Detector	1	T1	Binary-coded Signals,
	Performance of the optimum Receiver for	1	11	Comparison of Digital
24	Memory less Modulation – Probability of Error	1	Т1	Modulation Method,
27.	for Binary Modulation	1	11	Probability of Error for
25	Probability of Error for M-ary Orthogonal Signals	1	T1	Envelope Detection of M-
25.	Probability of Error for Mary DAM	1	T1	ary Orthogonal Signals and
20.	Drobobility of Emore for many DCV	1		Correlated Binary Signals
27.	Provability of Error for m-ary PSK	1	11	

S. No.	Торіс	No. of periods	Book(s) followed	Topics for self study
28.	Probability of Error for QAM	1	T1	
29.	Optimum Receiver for Signals with Random Phase in AWGN Channel – Optimum Receiver for Binary Signals	1	T1	
30.	Optimum Receiver for M-ary Orthogonal Signals	1	T1	
	Total periods required:	10		
	UNIT – IV: Spread Sp	ectrum Tecl	hniques	
31.	Introduction and Model of Spread Spectrum Digital Communication	1	T1	Digital Cellular CDMA System Based on DS
32.	Direct Sequence Spread Spectrum Digital Signals	2	T1	Spread spectrum, A CDMA
33.	Processing Gain and Jamming Margin	1	T1	System Based on FH
34.	Applications of DS-Spread Spectrum Signals – Antijamming Application	1	T1	Spread Spectrum Signals
35.	Low-Detectability Signal Transmission, Code Division Multiple Access	1	T1	
36.	Generation of PN-Sequences	2	T1	
37.	Frequency– Hopping Spread Spectrum Signals	1	T1	
38.	Other Types of Spread Spectrum Signals	1	T1	
	Total periods required:	10		·
	UNIT – V: Detection Of S	pread Specti	rum Signals	
39.	Coherent Direct-Sequence Receivers	1	T3	Matched Filters with
40.	Delay-Lock Loop Analysis	1	T3	Acquisition-Aiding
41.	Tau-Dither Loop and Non Coherent Carrier Tracking	1	Т3	Research Area: Spread
42.	Non coherent Frequency-Hop Receiver	1	T3	Spectrum Communication
43.	Acquisition of Spread-Spectrum Signals	1	T3	System
44.	Acquisition by Cell-By-Cell Searching	1	T3	
45.	Reduction of Acquisition Time – Acquisition with Matched Filters	1	Т3	
46.	Matched filters for PN Sequences	1	T3	
47.	Matched Filters for Frequency-Hopped Signals	1	T3	
	Total periods required:	09	·	·
	Grand total periods required:	50		

T1. John G. Proakis, "DIGITAL COMMUNICATIONS", McGraw Hill, 4th edition, 2001.

T2. Theodore S. Rappaport, "Wireless Communications", Pearson Education, 2nd edition, 2002.

T3. George R. Cooper & Clare D. McGillem, "Modern Communication and Spread Spectrum", McGraw-Hill Book Company, 1986.

REFERENCE BOOKS:

- R1. Marvin K. Simon, Jim K Omura, Robert A. Scholtz & Barry K.Levit, "Spread Spectrum Communications", Computer Science Press, 1995.
- R2. J.Marvin, K.Simon, Sami. M.Hinedi and William C. Lindsey, "Digital Communication Techniques", PHI, 2009.

Signature of the faculty Member framing the syllabus

(Autonomous)

Sree Sainath Nagar, A. Rangampet-517 102

DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING

<u>Lesson Plan</u>

Name of the Subject: Linear Algebra (14MT13831) Name of the faculty Member: Class & Semester: M. Tech. I Semester (CMS & DECS)

Section: -

S. No.	Торіс	No. of periods required	Book (s) followed	Topics for self study
	Unit-I: VECTORS AND L	INEAR EQU	ATIONS	
1.	System of linear equations	1	T1,T2	
2.	Vector equations	1	T1,T2	Gauss Elimination
3.	The matrix and vector equations AX=B and	2	T1,T2	method
	AX=0			
4.	Solution sets of linear system	2	T1,T2	
5.	Linear combinations, Linear dependence and	1	T1,T2	
	independence of vectors			
6.	Solutions of equations using LU	2	T1,T2	
	decomposition			
	Total of periods required:	9		
	Unit-II: VECTOR SPACES AND L	INEAR TRA	NSFORMAT	TIONS
7.	Vector spaces and subspaces	1	T1,T2	
8.	Null and column Spaces of a matrix	1	T1,T2	Change of basis
9.	Bases, Coordinate systems	1	T1,T2	Change of basis
10.	Dimension of a Vector Space	1	T1,T2	
11.	Linear transformation, Properties of linear	2	T1,T2	
	transformations			
12.	Rank and Nullity	2	T1,T2	
13.	Matrix of linear transformations	2	T1,T2	
	Total of periods required:	10		
	Unit-III: INNER PRO	DDUCT SPA	CES	
14.	Inner product, Norm	1	T1,T2	
15.	Inner product space,	2	T1,T2	
16.	Othrogonality	1	T1,T2	Sylvester's law of inertia,
17.	Orthogonal sets	1	T1,T2	positivo dofinitonoss
18.	Ortho normal basis	2	T1,T2	positive demitteriess.
19.	Orthogonal projections	1	T1,T2	
20.	Gram-Schmidt orthogonalisation process	2	T1,T2	
	Total of periods required:	10		
	Unit-IV: EIGEN VALUES A	ND EIGEN	VECTORS	
21.	Eigen Values and Eigen Vectors of a matrices	2	T1,T2	Hermitian, skew
22.	Eigen Values and Eigen Vectors of linear	1	T1,T2	Hermitian and Unitary
	transformations			matrices

23.	Eigen values and Eigen vectors of complex	2	T1,T2	Eigen filters
	matrices			
24.	Diagonalisation,	2	T1,T2	
25.	Quadratic forms- Nature	2	T1,T2	
26.	Orthogonality of symmetric matrices	1	T1,T2	
27.	Singular value decomposition (SVD).	2	T1,T2	
	Total of periods required:	12		
	Unit-V: ENGINEERING APPLICAT	TIONS OF LI	NEAR ALG	EBRA
28.	Applications to Difference equations-	3	T1	Network flows
	Discrete-time signals			
29.	Linear Independence in the space signals	2	T1	
30.	Applications to Decoupling a dynamical	3	T1	
	system			
31.	Complex Eigen Values in Decoupling systems	3	T1	
32.	Applications of inner product spaces to Fourier	3	T1	
	Series Analysis.			
	-			
	Total of periods required:	14		
	Grand total of periods required:	55		

- T1. David C. Lay, Linear Algebra and its applications, Fourth edition, Pearson education, India. (2014).
- T2.Jim DeFramza and Dan Gagliardi **Introduction to Linear Algebra with applications,** The McGraw. Hill Companies, India. (2012)

REFERENCE BOOKS:

- R1. Gilbert Strang, **Introduction to Linear Algebra**, Fourth edition, South Asian edition, Cambridge Press. (2009).
- R2. Otto Bretscher, Linear Algebra with applications, Third edition, Pearson education, India. (2007)

Signature of the faculty Member framing the syllabus

(Autonomous)

Sree Sainath Nagar, A. Rangampet-517 102

Department of Electronics and communication Engineering

Lesson Plan

Name of the Subject: Optical Communications and Networks (14MT23808) Class & Semester: M. Tech. (CMS) – I Semester & (DECS)-II Semester(Elective-II) Name of the faculty Member: G.Madhavilatha

S.	Торіс	No. of	Book(s)	Topics for self study
140.	UNIT	-I:	Tonowed	
1.	Evolution of fiber types	1	T1	Attenuation, Scattering losses,
2.	Guiding properties of fibers , Cross talk between fibers	1	T1	Fiber bend loss
3.	Coupled modes and mode mixing	1	T1	
4.	Dispersion properties of fibers	1	T1	
5.	Nonlinear effects of optical fibers-SRS, SBS, intensity dependent refractive index	2	T1	
6.	Characterization of materials for fibers	2	T1	
7.	Fiber preform preparation - Soot deposition, MCVD	1	T1	
8.	fiber drawing and control, roles of coating and jacketing	2	T1	
	Total periods required:	11		
	UNIT – II: OPTICAI	CABLE D	ESIGN	
			Г	
9.	Fiber design considerations-Fiber diameter, Cladding thickness, Low and high bit rate system	2	T1	Fiber Mechanical characteristics
10.	Design objectives and cable structures	2	T1	
11.	Fiber splicing- fiber end preparation, single fiber splices	2	T1	
12.	Array splices, measurement of splicing effects	2	T1	
13.	optical fiber connectors-The role of connectors, Connector alignment techniques	2	T1	
	Total periods required:	10	•	

UNIT -III: FIBER OPTIC COMPONENTS FOR COMMUNICATION & NETWORKING				
14.	Couplers, Isolators and Circulators	2	T2	Pump Sources for
15.	Multiplexers & filters- Bragg Gratings, Fabry-Perot Filters	2	T2	Raman Amplifiers, Wavelength
16.	Mach-Zehnder Interferometers, Arrayed Waveguide Grating	1	T2	converters- Interferometric
17.	Acousto-Optic Tunable Filter, High Channel Count Multiplexer Architectures	1	T2	Techniques
18.	Optical Amplifiers- Erbium Doped Fiber amplifiers, Raman amplifiers	2	T2	
19.	Transmitters- LED, Lasers	2	T2	
20.	Direct and External Modulation	1	T2	
21.	Detectors- Photo detectors	1	T2	_
22.	Optical Switches – Optical switch technologies	1	T2	-
23.	Wavelength Converters –Optoelectronic Approach, Optical gating	1	T2	-
	Total periods required:	14		•
	UNIT -IV: MODULATION	AND DEM	ODULATI	ION
			1	
24.	Signal formats for Modulation, Subcarrier Modulation and Multiplexing	1	Τ2	Capacity limits of optical fibers
25.	Optical Modulations – Duobinary, Single Side Band and Multilevel Schemes,	1	T2	
26.	Demodulation- Ideal and Practical receivers	1	T2	
27.	Bit Error Rates	2	T2	-
28.	Coherent Detection, Timing Recovery and Equalization	2	T2	
29.	Reed-Solomon Codes for Error Detection and Correction	1	T2	
	Total periods required:	8		
	UNIT –V: OPTICA	L NETWO	DRKS	
30.	Access Networks - architecture overview, Enhanced HFC	1	T2	Packaging and cabling of photonic components, broadcast
31.	Fiber to the curb(FTTC)	2	T2	OTDM networks.
32.	Photonic packet switching	1	T2	Research Topic:
33.	OTDM-Bit, Packet Interleaving	2	T2	Coherent Optical
34.	Optical AND gates	1	T2	Systems
35.	Synchronization	1	T2	
36.	OTDM testbeds	1	T2	
37.	Deployment considerations- Designing			
	the transmission layer using SDM, TDM, WDM, Unidirectional versus Bidirectional WDM systems.	1	T2	
	Total periods required:	10		
	Grand total periods required:		53	

Text Books:

- T1: S.E.Miller, A.G.Chynoweth, Optical Fiber Telecommunication, 1979
- T2: Rajiv Ramaswamy, Kumar N. Sivaranjan and Galen H.Sasaki," *Optical Networks* ", Elsevier, Third edition, 2010.

Reference Books:

- R1. John. M. Senior, "Optical fiber communications: Principles and Practice", Pearson, Third edition, 2010.
- R2: Gerd Kaiser, Optical Fiber Communication, McGraw Hill.

Signature of the faculty Member framing the syllabus

(Autonomous)

Sree Sainath Nagar, A. Rangampet-517 102

Department of Electronics and communication Engineering

Lesson Plan

Name of the Subject: RF Circuit Design (14MT16101) Class & Semester: M. Tech. (CMS) – I Semester Name of the faculty Member: Dr. V. R. Anitha

S. No	Торіс	No. of	Book(s)	Topics for self study
140.	UNIT – I: INTRODUCTION T	O RF ELE(TRONICS	
1.	The Electromagnetic Spectrum	1	T1	
2.	Units and Physical Constants, Microwave bands	1	T1	
3.	RF behavior of Passive components	2	T1	
4.	Tuned resonant circuits	1	T1	
5.	Vectors, Inductors and Capacitors	2	T1	
6.	Voltage and Current in capacitor circuits	1	T1	
7.	Tuned RF / IF Transformers	2	T1	
	Total periods required:	10		
	UNIT – II: TRANSMISS	ION LINE	ANALYSIS	
8.	Examples of transmission lines	1	T1	
9.	Transmission line equations and Biasing	1	T1	
10.	Kirchoffs Voltage and current law representation, Traveling voltage and current waves	1	T1	
11.	General Impedance definition, lossless transmission line model	1	T1	Parallel and Series
12.	Micro Strip Transmission Lines	1	T1	Connections
13.	Special Termination Conditions	2	T1	
14.	sourced and Loaded Transmission Lines	2	T1	
15.	Single And Multiport Networks: The Smith Chart	1	T1	
16.	Interconnectivity networks	1	T1	
17.	Network properties and Applications	1	Τ1	
18.	Scattering Parameters	2		
	Total periods required:	14		
	UNIT -III: MATCHING AN	D BIASINO	<u>G NETWOR</u>	RKS
19.	Impedance matching using discrete components	2	T1	Filter implementation
20.	Micro strip line matching networks	1	T1	and Coupled filters
21.	Amplifier classes of Operation and	1	T1	

	Biasing networks					
	RF Passive & Active Components			-		
22.	Filter Basics – Lumped filter design	1	T1			
23.	Distributed Filter Design, Diplexer Filters	2	T1			
24.	Crystal and Saw filters, Active Filters	1	T1			
25.	Tunable filters	1	T1			
24	Power Combiners / Dividers: Directional	1				
20.	Couplers	I				
27.	Hybrid Couplers, Isolators	1	T1			
28.	RF Diodes: BJTs, FETs,	1	T1			
29.	HEMTs and Models	1	T1			
	Total periods required:	13				
UNIT – IV: RF TRANSISTOR AMPLIFIER DESIGN						
	Characteristics of Amplifiers, Amplifier		74			
30.	Circuit Configurations	1				
	Amplifier Matching Basics Distortion					
31.	and noise products	1	T1			
32	Stability Considerations	1	T1	-		
33	Small Signal amplifier design	1	T1	Noise figure, VSWR,		
34.	Power amplifier design	1	T1	Gain		
35.	MMIC amplifiers	1	T1	-		
	Broadband High Power multistage			-		
36.	amplifiers	1	T1			
37.	Low noise amplifiers	1	T1			
38.	VGA Amplifiers	1	T1			
	Total periods required:	09		·		
	UNIT – V: OSC	CILLATOR	S			
39	Oscillator basics, Low phase noise	1	T1			
	oscillator design			-		
40.	High frequency Oscillator configuration	1	11			
			T1	-		
41.	LC Oscillators, VCOs	1		Descent Tables		
			T1	Research Iopics:		
42.	Crystal Oscillators, PLL Synthesizer	2		for Wireless		
				Communication		
		1	T1	Applications like		
43.	Direct Digital Synthesizer			Radars, Navigation,		
A A	RF Mixers : Basic characteristics of a	1	T1	winitary		
44.	mixer	I				
45.	Active mixers	1				
46.	Image Reject and Harmonic mixers	1	т1			
47.	Frequency domain considerations	2				
	Total periods required:	11	L	1		
	Grand total periods required:			57		

Text Books:

- T1: Reinhold Ludwing, Pavel Bretchko, "RF Circuit design: Theory and applications", Pearson Education Asia Publication, New Delhi 2001.
- T2: Devendra K. Misra, "Radio Frequency and Microwave Communication Circuits Analysis and Design", Wiley Student Edition, John Wiley & Sons, 2nd edition, July 2004.

Reference Books:

- R1: Mathew M.Radmangh, "Radio frequency and microwave electronics", PE Asia Publication, 2001.
- R2: Christopher Bowick, Cheryl Aljuni and John Biyler, "RF Circuit Design", Elsevier Science, 2008.
- R3: Joseph Carr, "Secrets of RF Design", Tata McGraw Hill Publications, 3rd Edition, 2004.

Signature of the faculty Member framing the syllabus

(Autonomous)

Sree Sainath Nagar, A. Rangampet-517 102

DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING

Lesson Plan

Name of the Subject: Research Methodology (14MT10310) Name of the faculty Member: Class & Semester: M. Tech. - I Semester S

Section:

S. No.	Торіс	No. of	Book(s)	Topics for self
		required	Tonowed	Study
	Unit-I: Introduction to Re	search Meth	odology	
1.	Research objective and Motivation	1	T1	Problems
2.	Types of Research –Descriptive vs	1	T1	encountered by
	Analytical,			researchers.
	Applied vs Fundamental, Quantitative vs			
	Qualitative,			
	Conceptual vs Empirical			
3.	Research Approaches	1	T1	
4.	Research and Scientific Methods	1	T1	
5.	Research Process	2	T1	
6.	Criteria of Good Research	1	T1	
	Total of periods required:	7		
	Unit-II: Research Prol	blem and De	sign	
7.	What is Research Problem?	1	T1	Experimental
8.	Selecting the Problem	1	T1	designs. Developing
9.	Necessity of Defining the Problem	1	T1	research plan.
10.	Techniques involved in Defining a Problem	2	T1	
11.	What is Research Design? Its need and	1	T1	
	features			
12.	Important concepts of Research Design	1	T1	
13.	Designing Methods:	2	T1	
	Research design in case of exploratory			
	research studies,			
	diagnostic research studies. Desearch design			
	in case of hypothesis testing research			
	studios			
	Total of periods required:	9		
	Unit-III: Data Collection, An	alvsis, and I	lypothesis	
14.	Collection of Primary Data:	1	T1	Guidelines for
	Observation Method, Interview Method,			constructing
	Questionnaires, Schedules, Other Methods			questionnaires and
15.	Collection of Secondary Data	1	T1	interviews.
16.	Selection of Appropriate Method for Data	1	T1	
	Collection			
17.	Processing Operations: Editing, Coding,	2	T1	
	Classification and Tabulation			
18.	Types of Analysis	1	T1	
19.	What is Hypothesis? Basic Concepts of	2	T1	
	Testing Hypothesis: Null hypothesis and			
	alternative hypothesis, Level of significance,			

	Decision rule, Type I and Type II errors,			
	Two-tailed and One-tailed tests			
20. Hypothesis Testing Procedure		1	T1	
	Total of periods required:	9		
	Unit-IV: Statistics	in Researcl	า	
21.	Review of Statistical Techniques: Mean,	1	T1	Simple regression
	Median, Mode			analysis.
22.	Geometric Mean, Harmonic Mean, Variance,	1	T1	
	Standard Deviation			
23.	Measure of Asymmetry	1	T1	
24.	Normal Distribution	2		
25.	Chi-Square as a Test for Comparing Variance	1	T1	
26.	Steps Involved in Applying Chi-Square Test	1	T1	
27.	Problems	2		
	Total of periods required:	9		
	Unit-V: Interpretation a	nd Report V	Vriting	
28.	Interpretation: Meaning, Importance	1	T1	Mechanics of writing
29.	Interpretation: Techniques and Precautions	1	T1	research report.
30.	Report Writing: Significance and Different	2	T1	
	Steps			
31.	Types of Reports	1	T1	
32.	Precautions in Report Writing	1	T1	
	Total of periods required:	6		
	Grand total of periods required:	40		

Text Book:

T1. C.R. Kothari, *Research Methodology: Methods and Techniques*, New Age International Publishers, New Delhi, 2nd Revised Edition, 2004.

Reference Books:

- R1. Ranjit Kumar, Research Methodology: A step-by-step guide for beginners, Sage South Asia, 3rd ed., 2011.
 R2. R. Panneerselvam, Research Methodology, PHI learning Pvt. Ltd., 2009

Signature of the faculty Member framing the syllabus

SREE VIDYANIKETHAN ENGINEERING COLLEGE (Autonomous) Sree Sainath Nagar, A. Rangampet-517 102

Department of Electronics and communication Engineering

Lesson Plan

Name of the Subject: Satellite Communications (14MT16102) Class & Semester: M. Tech. (CMS) – I Semester Name of the faculty Member: Dr. N. Padmaja

S.	Торіс	No. of	Book(s)	Topics for self study		
NO.			followed			
1	UNII – I: Satemite Orbits and Subsystems					
1.	Overview of satellite communications,	1	11	Origin of Satellite		
2	Online Markening Leal Angle	2	T1	systems around the		
۷.	Orbital Mechanics, Look Angles	2	11	world, existing satellite		
2	Orbital neutrobations Analose neurises	2	T1	specific purpose and		
3.	Orbital perturbations, Apogee- perigee	2	11	applications		
4	Cas stationers orbits launching orbits	1	T1	applications.		
4.	Geo stationary orbits -faunching orbits,	1				
E	Taution venicles.		T1			
э.	Control system	1				
6	TT &C subsystem	1	T1			
0.	Procession Commission	1				
1.	Power systems, Communication	2	11			
	Subsystems	1	T1			
8.	Satellite Antenna Equipment	1	11			
TINIT	I otal periods required:		to Swatama			
UNII -	- 11: Low Earth Orbit and Non-Geostauor	lary Salem	le Systems			
9.	Introduction-Orbit Considerations.	2	T1	Sun synchronous		
	Equatorial Orbits. Inclined Orbits.			orbits. Radiation		
	Elliptical Orbits, Molniva Orbit			Effects. Radiation		
10.	Coverage and Frequency Considerations.	2	T1	Safety and Satellite		
	General Aspects. Frequency band			Telephones		
11.	Elevation Angle Considerations, Number	1	T1	1 I		
	of Beams Per Coverage, Off-Axis					
	Scanning					
12.	Determination of Optimum Orbital	1	T1			
	Altitude					
13.	Projected NGSO System Customer	1	T1			
	Service Base-Delay and Throughput					
	Considerations-System considerations					
14.	Incremental Growth, Interim Operations,	1	T1			
	Replenish Operations					
15.	Operational NGSO Constellation	2	T1			

	Designs Ellipse Global star New ICO			
	Iridium Orbcomn Sky bridge Teledesic			
	Total periods required:	10		
UNIT -	- IV: Efficient Techniques & Satellite Pac	ket Commu	inications	
16	Demand Assignment Multiple Access		T2	SPADE systems
10.	The ERLANG B Formula	1	12	Capacity search for
17.	Types of Demand Assignments-DAMA		T2	DA-TDMA.
	Characteristics	1		Repacking on-going
18.	Real-Time Frame Reconfiguration,		T2	Calls, Problems on
	Frame and Burst Structures for DA-	2		Traffic Intensity
	TDMA			
19.	DAMA Interfaces- SCPC-DAMA	1	T2	
20.	Digital Speech Interpolation.	1	T2	
21.	Satellite Packet Communications:		T2	
	Preliminaries-Message Transmission by	1		
	FDMA			_
22.	The M/G/1 Queue-Message Transmission	1	T2	
	by TDMA		.	_
23.	Pure ALOHA: Satellite Packet Switching	1	12	_
24.	Slotted ALOHA-Packet Reservation	1	12	_
25.	I ree Algorithm		12	
	I OTAL PERIODS REQUIRED:	$\frac{11}{1}$	i	iona
	UNIT -IV: Satemite Spread S	pectrum C		
26.	Direct Sequence Spread Spectrum	Ĩ	12	Spread Spectrum
27	Systems, PN Sequence	2	то	Pagention DS SS
27.	Lift Kate Performance in Uniform	Z	12	CDMA Capacity and
28	Direct Sequence Code Division Multiple	2	Т2	examples
20.	Access	2	12	examples.
29.	Sequence-Synchronous DS-CDMA	1	T2	_
	Sequence-Asynchronous DS-CDMA			
30.	Random Access DS-CDMA	1	T2	-
31.	Frequency HOP Spread Spectrum	2	T2	-
	Systems, Frequency HOP Code Division			
	Multiple Access			
32.	DS Acquisition and Synchronization	1	T2	
33.	FH Acquisition and Synchronization	1	T2	
34.	Satellite on Board Processing	1	T2	
	Total periods required:	12		
	UNIT – V: Satelli	te Applicat	ions	
35.	Very Small Aperture Terminal	1	T2	Overview of VSAT
	Networks: VSAT Technologies			systems, Polling VSAT
36.	Network Configurations	1	T2	Networks, Radio and
37.	Multi-access and Networking, Network	2	T2	Satellite Navigation.
	Error Control			Kesearch Topics:
38.	Mobile Satellite Networks: Operating	1	٢2	Satellite and Kadio
	Environment			Networks, Challenges

39.	MSAT Network Concept-CDMA MSAT	1	T2	in Earth-Satellite
	Network-			propagation. Quality of
40.	Statistics of Mobile Propagation.	1	T2	Service (QoS)
				management in
41.	Direct broadcast satellite television and	1	T1	heterogeneous
	radio			telecommunications
	C-band and ku-band home Satellite TV.			and satellite networks.
42.	Digital DBS TV, DBS-TV System	1	T1	
	Design.			
43.	DBS-TV Link Budget, Error Control in	1	T1	
	Digital DBS-TV			
44.	Master Control Station and Uplink	1	T1	
	Installation of DBS-TV Antennas-			
	Satellite Radio Broadcasting			
	Total periods required:	11		
	Grand total periods required:	55		

Text Books:

- T1: Timothy Pratt, Charles Bostian, Jeremy Allnutt, *Satellite Communications*, John Wiley & Sons, 2nd Edition, 2003.
- T2: Tri T. Ha, Digital Satellite Communications, McGraw-Hill, 2nd Edition, 1999.

Reference Books:

- R1: Dennis Roddy, *Satellite Communications*, Tata McGraw-Hill Education Private Limited, 4th Edition, 2009.
- R2: Wilbur L. Pritchard, H.G. Suyderhoud, Robert A.Nelson, *Satellite Communication Systems Engineering*, 2nd Edition, Pearson Publications, 2008.

Signature of the faculty Member framing the syllabus

Signature of the Chairman (BOS)

(Autonomous)

Sree Sainath Nagar, A. Rangampet-517 102

Department of Electronics and communication Engineering

Lesson Plan

Name of the Subject: Speech Processing (14MT16103) Class & Semester: M. Tech. CMS-I Semester Name of the faculty Member: Mr T V S Gowtham Prasad

S. No.	Торіс	No. of periods	Book(s) followed	Topics for self study			
UNIT – I: DIGITAL MODEL FOR THE SPEECH SIGNAL							
1.	The mechanism of speech production	1	T1	Lossless Tube models-wave propagation in concatenated			
2.	acoustic phonetics	1	T1	lossless tubes, Relationship to digital filters.			
3.	The Acoustic theory of speech production- sound propagation	1	T1				
4.	uniform lossless tubes	1	T1				
5.	Effect of losses in the vocal tract	1	T1				
6.	Effect of radiation at the lips	1	T1				
7.	Vocal tract transfer functions for vowels	1	T1				
8.	the effect of nasal coupling	2	T1				
9.	Excitation of sound in the	2	T1				
	vocal tract						
10.	Digital model for speech	2	T1				
	Total poriods required:	12					
	UNIT – II: TIME DOMA	IN MODE	LS FOR SPEE	CH PROCESSING			
11.	Introduction Window	1	T1	Digital representation of			
	considerations			speech signals. Short Time			
12.	Short Time energy and average magnitude	1	T1				
13.	Short time average zero	1	T1				
14.	Speech vs silence	1	T1				
	discrimination using Average	-					
	energy and zero crossing						
15.	Pitch period estimation using	1	Τ1				
	parallel processing approach						
16.	The short time	1	Τ1	1			
	autocorrelation function						
17.	The short time average magnitude difference	2	T1				

	function			
18	Pitch period estimation using	2		-
10.	the autocorrelation function	2	T1	
	the autocorrelation function.			
	Total poriods required:	10		
	UNIT -III· HOMOM	ORPHIC S	PEECH PROC	FSSING
10	Homomorphic systems for		т	
19.	convolution – properties of the	2	11	-
	complex Censtrum	2		
20	computational considerations	1	T1	-
21.	The complex Cepstrum of	1	T1	
	speech			
22.	pitch detection	2	T1	
23.	formant estimation,	2	T1	
24.	Homomorphic vocoder	1	T1	
	Total periods required:	9		
	UNIT – IV: LINEA	R PREDIC	TIVE CODING	GOF SPEECH
25.	Basic principles of linear	2		Lattice formulation and
	predictive analysis – Auto		T1	solution. prediction error
	correlation method			signals. Relationship between
				LPC analysis with Lossless
26.	The covariance method	1	T1	tubes.
27	Computation of the gain for the	1	T1	-
27.	model	I	11	
28	solution of LPC Equations	1	T1	-
20.	Cholesky Decomposition	I	11	
29	solution for the covariance	1	T1	-
27.	method.	·		
30.	Durbin's Recursive solution for	2	T1	1
	the autocorrelation equations.			
31.	Comparision between methods	1	T 4	
	of solutions of LPC analysis		11	
	equations			
32.	Applications of LPC parameters	1	Т1	
	 Pitch detection using LPC 			
	parameters			4
33.	Formant analysis using LPC	1	T1	
	parameters.			
	I otal periods required:		TO DECOCH	TION OXOTEMO
24	UNII – V: SPEECH A	AND SPEAK	EK KECUGNI	IIUN SYSTEMS
34.	speaker recognition system-	2		XI
25	speaker identification systems	n	T1	voice response systems.
<u>ა</u> ე.	speaker identification systems.	Z		Research Topics:
36	Speech recognition system-	2	T1	1 ext to Speech synthesis,
	isolated digit recognition	-		Analysis of Speech signal
	system,			parameters.
37.	continuous digit recognition	1	T1	1
	system,			
38.	LPC distance measure	1	T1]
	Total periods required:	08		
Gr	and total periods required:	52		

- 1. L R Rabiner and SW Schafer, "Digital processing of speech signals", pearson education, 2006.
- 2. LR Rabiner ,BH Juang, B Yegnanarayana, "Fundamentals of Speech Recognition", pearson Education, 1993.

REFERENCE BOOKS:

- 1. Thomas F Quateri, "Discrete time speech signal processing", pearson edition, 2006.
- 2. Ben Gold & Nelson Morgan, "Speech & audio signal processing", wiley, 2006.
- 3. Douglas o shaughnessy, " Speech Communications", 2nd Edition, Oxford university press, 2000.

Signature of the faculty Member framing the syllabus

(Autonomous)

Sree Sainath Nagar, A. Rangampet-517 102

Department of Electronics and communication Engineering

Lesson Plan

Name of the Subject: Transform Techniques (14MT13808) Class & Semester: M. Tech. (CMS & DECS) – I Semester Name of the faculty Member: Mr. K. V Koteswara Rao

S. No.	Торіс	No. of	Book(s)	Topics for self study	
LINIT T					
1.	Review of Transforms:	1	T2	Parseval's Identity for	
	Vector space functions and function	-		the CWT Inverse	
	spaces			CWT as a manual to	
2.	Fourier transform	2	T2	CwT as a many-to-	
3	Short Time Fourier Transform	2	Т2	One Operation.	
3.	Welsh Hedemard Hear	1	D1	-	
-+. 5	Valsh, Hauamalu, Haa	1	RI D1	-	
5.	Statt, KL1, Hilbert transforms	1	T1	-	
0.	Introduction Continuous Time Wavelets	1	11		
7	Definition of the CWT	1	T1		
7.	The CWT as a correlation	1	T1 T1	-	
0. Q	Constant O Easter Eiltering Interpretation	2	T1 T1	-	
).	and Time Frequency Resolution	2	11		
10	The CWT as an operator	1	T1		
10.	Inverse CWT	1	T1	-	
11.	Total pariods required:	1/	11		
LIN	I OTAL PERIOUS LEQUIEU.	IT OPM AND		ONAL WAVELET	
	DFCOMPC	OKM AND			
12.	Introduction		T1	Regularity and	
	Introduction	1		convergence. Band	
				limited Bi-orthogonal	
13.	Approximations of vectors in nested	1	T1	Decomposition. Design	
	linear vector spaces			and Selection of	
14.	Example of an MRA-Bases for the	2	T1	Wavelets.	
	Approximation Subspaces and Harr				
	Scaling Function			-	
15.	Bases for the Detail Subspaces and Harr	2	TI		
	Wavelet				
16.	Digital Filter Implementation of the Harr	2	T1		
	Wavelet Decomposition				
		00			
	Total periods required:				
	11 -111: MIKA UKTHONOKMAL WAVE FII TED I	LETS, ANI Ranks	J THEIR R	ELATIONSHIP TO	
17.	Introduction	1	T1	Daubechies	
18.	Formal Definition of an MRA	1	T1	construction of	
		-		Orthonormal Scaling	
19.	Construction of a General Orthonormal	2	T1		
·					

	MRA			Functions.
20.	A Wavelet basis for MRA	2	T1	
21.	Digital Filtering Interpretation	1	T1	
22.	Examples of Orthogonal Basis	1	T1	
	Generating Wavelets			
23.	Interpreting Orthonormal MRAs for	2	T1	
	Discrete time signals			
24.	Miscellaneous issues Related to PRQMF	1	T1	
	Filter Banks			
25.	Generating Scaling Functions and	1	T1	
	Wavelets from Filter Coefficients			
	Total periods required:	12		
	UNIT – IV: ALTERNATIVE WA	VELET R	EPRESENT	TATIONS
26.	Bi-orthogonal Wavelet Bases	2	T1	M-Band Wavelets,
27.	Filtering Relationship for Bi-orthogonal	1	T1	Lifting Scheme.
	Filters			
28.	Examples of Bi-orthogonal Scaling	1	T1	
	Functions and Wavelets			
29.	Two-Dimensional Wavelets	2	T1	
30.	Non-separable Multidimensional	1	T1	
	Wavelets			
31.	Wavelet Packets	2	T1	
	Total periods required:	09		
	UNIT – V: APPLICATI	ONS OF W	AVELETS	
32.	Wavelet De-noising	2	T1	Wavelets in Boundary
33.	Speckle Removal	1	T1	Value Problems.
34.	Edge Detection and Object Isolation	2	T1	Research Topics:
35.	Image Fusion	2	T1	Adaptive Wavelet
36.	Object Detection by Wavelet Transforms	1	T1	Transforms, Stationary
	of Projections			Wavelet Transforms,
37.	Scaling Functions as signaling pulses	2	T1	Cycle Wavelet
38.	Discrete Wavelet Multitone Modulation	1	T1	Transforms.
	Total periods required:			
	Grand total periods required:	54		

Text Books:

- T1: Raghuveer M.Rao and Ajit S.Bopardikar, "Wavelet Transforms-Introduction to theory and applications", Pearson edu, 1998.
- T2: Soman.K.P, Ramachandran.K.I, Resmi.N.G, "Insight into Wavelets from theory to *Practice*", PHI, Third Edition, 2010.

Reference Books:

- R1. R. C. Gonzalez, R. E. Woods, "*Digital Image Processing*," 2nd Edition, Pearson Education, 1992.
- R2: Jaideva C Goswami, Andrew K.Chan, "Fundamentals of Wavelets-Theory, Algorithms and Applications", John Wiley and sons, 1999.
- R3: C.Sidney Burrus, Ramesh A Gopinath and Haitao Guo, "Introduction to Wavelets and Wavelet Transforms", Prentice Hall, 1998.

Signature of the faculty Member framing the syllabus

Signature of the Chairman (BOS)