LESSON PLAN

Name of the Subject: ENGINEERING MATHEMATICS(14BT1BS03) Class & Semester: I - B.Tech year wise

S. No.	Торіс	No. of periods	Book(s) followed	Topics for self study
	UNIT – I: DIFFERENTIAL EQ	UATIONS- AP	PLICATIONS	
1	Ordinary Differential Equations of first	1	T1	
	order and first degree – introduction		77 1	
2	Linear differential equations	1	T1	Differential equations of
3	Bernoulli type differential equations	1	T1	first order and first
4	Exact equations	1	T1	degree, variable
5	Equations reducible to exact.	3	T1	separable
6	Orthogonal trajectories	1	T1	Homogeneous type.
7	Newton's Law of cooling.	1	T1	
8	Law of natural growth and decay	1	771	Non-homogeneous type
9	Non-homogeneous linear DE & complimentary functions	1	T1	differential equations.
10	Particular integrals for $Q(x) = e^{ax}$	1	T1	Applications of
11	Particular integrals for $Q(x) = sin ax\&cos$ ax,	1	T1	differential equations to
12	Particular integrals for $Q(x) = x^n$	1	T1	Law of natural growth and decay,
13	Particular integrals for $Q(x) = e^{ax} V(x)$	1	T1	deflection of beams
14	Particular integrals for $Q(x) = x V(x)$.	1	T1	
15	Method of variation of parameters	2	T1	
16	Applications to L-R-C circuits	2	T1	
	Total periods required:	20		
	UNIT – II: PARTIAL DIFFERENTIATIO	DN & APPLIC	ATIONS OF [DERIVATIVES
17	Functions of two or more variables	2	T1	
	Homogeneous functions	1	T1	
18	Total derivatives	2	T1	
19	Derivatives of implicit function and Jacobian	2	T1	Taylors and Mac-laurin
20	Maxima and minima of functions of two variables with and without constraints	3	T1	series for functions of one and two variables.
21	Lagrange's method of undetermined multipliers.	2	T1	Evolute and envelop of
22	Radius, centre and circle of curvature	4	T1	a given family of curves
23	Curve tracing – Cartesian form	2	T1	1
24	Curve tracing – parametric form	2	T1	1
25	Curve tracing – polar form.	2	T1	1
	Total periods required:	22		

	UNIT -III: APPLICATIO	ONS OF INT	EGRATIO	N
26	Applications of integration – length of	2	T1	
27	curves Area of surfaces of revolution	2	T1	-
28	Volume of solids of revolution	2	T1	_
29	Double integrals	2	T1	
30	Change of variables	3	T1	_
31	Change of order of integration.	3	T1	_
32	Evaluation of Triple integrals	2	T1	_
33	Volume as double integral.	2	T1	
	Total periods required:	18		
	UNIT – IV: LAPLACE TRAN	SFORMS-	APPLICAT	TIONS
34	Laplace transforms of standard functions.	3	T1	
35	Properties of Laplace transforms.	2	T1	Heaviside partial fraction expansions for Laplace transforms
36	First and second shifting Theorems	1	T1	
37	Laplace transforms of derivatives and integrals.	4	T1	
38	Laplace transforms of periodic functions.	1	T1	
39	Unit step function. Dirac delta function.	1	T1	
40	Inverse transforms.	3	T1	
41	Convolution theorem.	2	T1	
42	Applications of Laplace transforms to linear differential equations with constant	3	T1	
	coefficients.	20		
	Total periods required: UNIT – V: VECT		ILLIC	
43	Vector differentiation	1	T1	
44	Gradient	1	T1	
45	Divergence	1	T1	Equations for tangent, normal, bi- tangent and bi - normal at a given point on the curve
46	Curl	1	T1	
47	Vector identities and Laplacian Operator.	3	T1	
48	Line integrals	1	T1	
49	Independent of path – work done	1	T1	
50	Conservative field	1	T1	
51	Scalar potential functions	1	T1	
52	Surface integrals, Flux	2	T1	
53	Volume integrals	1	T1	
54	Verifications and applications of Greens theorem	2	T1	
55	Verifications and applications of Stokes theorem	2	T1	
56	Verifications and applications of Gauss divergence theorem	2	T1	
	Total periods required:	20	•	
	Grand total periods required:	100		

TEXT BOOKS:

T1: T.K.V. Iyengar, B. Krishna Gandhi,S. Ranganatham and M.V.S.S.N. Prasad, **Engineering Mathematics**, Vol. 1, S. Chand & Company, 12/e ,2013.

REFERENCE BOOKS:

R1: Grewal, B.S., Higher Engineering Mathematics, Khanna Publishers, Delhi, 42/e,2012.
R2: Kreyszig, E., Advanced Engineering Mathematics, John Wiley and Sons, Inc., 8/e.2006

Signature of the faculty Member

Signature of the HOD