LESSON PLAN

Name of the Subject: MATHEMATICAL METHODS (14BT1BS04) Class & Semester: I B.Tech year wise all branches except CE and ME

S. No.	Торіс	No. of periods	Book(s) followed	Topics for self study
	UNIT – I: MATRIX THEOF			DNS
1	Rank of a matrix - Echelon form	2	T1	
2	Normal form of a matrix	1	T1	
3	Inverse of a matrix by normal form.	1	T1	
4	Homogenous linear system of equations	2	T1	Solutions of non- Homogeneous equations by Cramer's rule, Matrix inversion method, Gauss elimination and Gauss siedel iteration methods.
5	Non-homogenous system of linear equations.	2	T1	
6	Solution of equations - Gauss elimination method.	1	T1	
7	Eigen values & Eigen vectors and properties.	3	T1	
8	Cayley Hamilton Theorem – verification and applications	2	T1	
9	Inverse and powers of a matrix using Cayley Hamilton Theorem,	1	T1	
10	Diagonalization of a matrix	1	T1	
11	Quadratic forms & Nature of QF	2	T1	
12	Normal form of Q F	2	T1	1
	13Total periods required:	20	•	
UN	IT – II: NUMERICAL SOLUTIONS, CU	J RVE FITT	ING AND	INTERPOLATION
13	Numerical solutions of equations by Bisection method	2	T1	Numerical solutions of equations by iteration method Fitting power curves to
14	Numerical solutions of equations by Regula-Falsi method	2	T1	
15	Numerical solutions of equations by Newton – Raphson's method	2	T1	the given data.
16	Fitting of a straight line by least square method	2	T1	Interpolation by Gauss forward,
17	Fitting of a parabola by least square method	1	T1	Gauss backward, Sterling's, Bessel's and
18	Fitting of an exponential curve by least square method	1	T1	Everett's Formulae, Newton's divided difference formula
19	Interpolation - forward difference , backward difference & central difference operators (definitions)	1	T1	

20	Relationships between different types of	2	T1	
	operators			
21	Interpolation by Newton's Forward	2	T1	
- 22	formula		T_1	_
22	Interpolation by Newton's Backward formula,	2	T1	
23		2	T1	_
23	Lagranges Interpolation formula	19 ²	11	
	Total periods required: UNIT -III: NUMERICAL DIFFEI		ON INTE	CDATION
	AND SOLUTIO			GRATION
24	Numerical differentiation using		T1	
	Newton's forward formula	3		
25	Numerical differentiation using	3	T1	Numerical
_	Newton's backward formula.	_		differentiation by
26	Numerical integration by	1	T1	Gauss forward,
	Trapezoidal rule			Gauss backward,
27	Numerical integration by	2	T1	Sterling's formulae.
	Simpsons 1/3 rule,			_
28	Numerical integration by	2	T1	Numerical integration
	Simpsons 3/8 rule.			by Boole's and
29	Numerical solutions of ordinary	3	T1	Weddel's rule.
	differential equations using Taylor			
	series			Solutions of ODE by
30	Numerical solutions of ordinary	3	T1	predictor corrector
	differential equations using Modified			methods :
- 21	Euler's method			Milne's method and
31	Numerical solutions of ordinary	3	T1	Adam- Boshforth method
	differential equations using			method
	Runge – Kutta method			
	(4 th order only).	20		
	Total periods required:	20		IES
32	UNIT – IV: TRANSFORM Fourier series Dirichlet's conditions,	$\frac{1}{2}$	T1	
52	Euler's formulae.	2	11	
33	Fourier series of	2	T1	
55	Even and odd functions.	2	11	
34	Half-range Fourier sine and cosine	2	T1	_
51	expansions.	_		
35	Fourier integral theorem (statement	3	T1	_
	only), Fourier sine and cosine integrals	-		
36	Fourier sine and cosine transforms,	3	T1	Finite Fourier
	inverse transforms.			Transforms
37	Z – transforms, properties	2	T1	
38	Damping rule, shifting rule	1	T1	
39	Initial and final value theorems	2	T1	

10		2	T 1			
40	Convolution theorem	2	T1			
41	Inverse Z– transforms	3	T1			
42	Solution of difference equations by Z–	3	T1			
	transforms.					
	Total periods required:		-	·		
UNIT – V: PARTIAL DIFFERENTIAL EQUATIONS						
43	Formation of Partial differential	3	T1			
	equations					
44	Solutions of first order linear p.d.e. using	3	R1			
	Method of grouping ,Lagrange's method.					
45	Method of separation of variables	3	T1			
46	Solutions of one dimensional Wave	3	T1			
	equation					
47	Heat equation.	2	T1			
48	Two dimensional Laplace equation	2	T1			
	Total periods required:					
	Grand total periods required:					

TEXTBOOK:

T1 : T.K.V. Iyenger, B. Krishna Gandhi, S.Ranganadham and M.V.S.S.N.Prasad, Mathematical Methods, S.Chand and Company, 8/e, 2013.

REFERENCE BOOKS:

R1. B.S. Grewal, Higher Engineering Mathematics, Khanna publishers, Delhi, 42/e, 2012.

R2 S.S.Sastry, Introductorymethodsof Numerical Analysis, Prentice Hall of India, 4/e,

2005.

Signature of the faculty Member

Signature of the HOD