Lesson Plan

Name of the Subject

: Engineering Mechanics (14BT10301)

: B.Tech. I Year (Civil & Mechanical Engineering)

S. No.	Торіс	No. of periods	Book(s) followed	Topics for self- study			
UNIT – I: Basic Concepts							
1	Axioms of Mechanics – basic quantities of mechanics and their units	2	Τ1	Visit http://www.enginee			
2	System of forces- Lami's theorem	2	T1	ringvideos.org/mec hanics and watch			
3	Moment of forces and its Application	3	T1				
4	Couples and Resultant of Force System	2	T1 & T2	Body. Diagrams			
5	Concurrent force systems, parallel force systems	2	T1 & T2	2D. Example			
6	Non-concurrent force systems. Free body diagrams	2	T1 & R1	Distributed Force- Hydrostatic			
7	Friction as a force – Laws of dry friction – Wedge, screw-jack, and differential screw-jack	7	T1, R1, & R2	Pressure on Wall. Introduction to Friction.			
8	Introduction to Virtual work principle	4	T1, R1, & R2	Box on Ramp.			
Total periods required: 24							
UNIT – II: STRUCTURAL ANALYSIS							
9	Types of Supports – Support reactions for beams with different types of loading, concentrated, uniformly distributed and uniformly varying loading	4	T1 & T2	2D Frame Analysis- Ladder.			
10	Types of frames –perfect frames, Analysis of frames using method of joints	6	T1, T2 & R2				
11	Analysis of frames using method of sections	6	T1, T2 & R2				
	Total periods required:	16					
UNIT-III: CENTROID, CENTER OF GRAVITY, MOMENTS OF INERTIA							
12	Centroids of simple figures by integration	2	T1, T2 & R1	Develop a simple method of locating			
13	Centroids of Composite figures	3	T1, T2 & R1	the center of gravity of a human being			
14	Centre of Gravity of bodies, Centre of Gravity of Composite figures	3	T1, T2 & R1	Develop a small, low-cost			
15	Parallel axis and perpendicular axis theorems- Moments of Inertia of Composite Figures	3	T1, T2 & R1	experimental set up to show usefulness of center of gravity			
16	Mass Moment of Inertia of Simple solids, Moment of Inertia of composite masses	4	T1, T2 & R1	calculation.			
17	Theorems of Pappus and Guldinus	3	T1, T2 & R1				
	Total periods required:	18					
UNIT – IV: KINEMATICS							

18	Rectilinear and Curvilinear motion –	4	T1 & T2	Time-varying		
	Velocity and Acceleration		T1 0 T 2	Acceleration.		
19	Motion of a projectile	5	11 & 12	1D Kinematics-		
20	Normal and tangential accelerations	5	T1 & T2	Depends on Position. Project 12-1D in R2.		
	Total periods required:	14				
UNIT – V: KINETICS						
	Analysis as particle and Analysis as a	6	T1, R1, & R2	Project 13-2D in R2.		
21	Rigid Body in Translation - Newton's			Project 14-1D in R2.		
	laws			Project 15-1D in R2.		
	Work Energy Method – Equation for	5	T1, R1, & R2	Project 16-2D in R2.		
22	Translation, Work – Energy application					
	to Particle Motion					
23	Impulse-Momentum Equation	5	T1, R1, & R2			
			T1. R1. & R2			
24	Fixed axis Rotation	2				
Total periods required:		18				
Grand total periods required:		90				

Text Books:

- T1: S.S. Bhavikatti and K.G. Rajashekarappa, *Engineering Mechanics*, New Age International (P) Ltd., 3rd edition, 2008
- T2: Basudeb Bhattacharya, Engineering Mechanics, Second Edition, Oxford University Press, 2nd Edition, 2014.

Reference Books:

- R1: S. Timoshenko, Dh. Young, and J.V. Rao, Engineering Mechanics, Tata McGraw-Hill Publishing Company Limited, Revised 4th Edition, 2007.
- R2: R.C. Hibbeler, *Engineering Mechanics Statics and Dynamics*, Prentice Hall, 8th Edition, 1998.
- R3: K. Vijaya Kumar Reddy and J. Suresh Kumar, *Singer's Engineering Mechanics Statics and Dynamics*, BS Publications, 3rd Edition.