SREE VIDYANIKETHAN ENGINEERING COLLEGE

(Autonomous) Sree Sainath Nagar, A. Rangampet-517 102

Department of Mechanical Engineering Lesson Plan

Name of the Subject

: THERMODYNAMICS(14BT30303)

Class & Semester

: B.Tech. II Year - I -Sem

Name of the faculty Member : Mr.R.L.Krupakaran

S. No.	Торіс	No. of periods	Book(s) followed	Topics for self- study
	UNIT – I: BASI	C CONCE	PTS	
1	System, Control volume, Surrounding, Boundaries, Universe, Types of systems	1	T1	 Application of reversible and irreversible process. Calculation of work and heat transfer for different applied process
2	Thermodynamic equilibrium, State, Property, Process, Cycle;	1	T1	
3	Reversibility	1	T1 & T2	
4	Quasi – static process, Point and path function,	1	T1 & T2	
5	Irreversible process, Zeroth law of thermodynamics	1	T1 &R1	
6	Work transfer and Heat transfer	1	T1 , R1,R3	
7	Simple problems on pdv work,heat transfer	1	T1, R1, & R3	
	Total periods required:	7	•	
	UNIT-II: FIRST LAW OF THERMO		S AND SECON	D LAW OF
	THERMOD		1	
9	First Law Of Thermodynamics; perpetual motion machine (PMM) of first kind	1	T1	 Apply SFEE for diffuser, condenser, evaporators. Heat engine problem for parallel and series condition, Application of carnot cycle.
10	Limitations of first Law; First law for a closed system	1	T1	
11	Energy a property of system;	1	T1	
12	First law applied to a flow process: steady flow energy equation.	1	T1 & T2	
13	Simple problems on SFEE for turbine, compressor, boiler, heat exchanger, nozzle.	1	T1, R1 &R3	
14	Kelvin-Planck and Clausius statements of second law and their equivalence;	1	T1 , R1,R3	
15	Thermal reservoir: Heat engine, Refrigerator, Heat pump; PMM of second kind:	1	T1, R1, & R3	
16	Simple problems on Heat engine and refrigerator, heat pump	1	T1,T2 R1, & R2	
17	Carnot cycle; Carnot's theorem.	1	T1,T2	
	Total periods required:	9		
	UNIT – III: ENYTRO	DPY AND	AVAILABILIT	Y:
18	Clausius theorem and Clausius inequality: Entropy as a property	1	T1, T2 & R3	1. Development of

			T1 T2 0 D1					
10	Principle of entropy increase, and		T1, T2 & R1	entropy concepts				
19	applications; Third law of	1		for different				
	thermodynamics.	1	T4 T2 0 D4	applications.				
20	Availability and irreversibility,	1	T1, T2 & R1					
21	Available Energy: Maximum Work in A Reversible Process;	1	T1, R1 & R3					
	Simple problems on Available Energy:		T1, T2 &					
22	Maximum Work in A Reversible Process;	1	R1,R2					
	Availability in Non - Flow and Flow		T1, T2 &					
23	Processes.	1	R1,R2					
24	Simple problems on availability in nlow and non flow process	1	T1, T2 & R1					
	Total periods required:	7						
UNIT – IV: PURE SUBSTANCES AND PROPERTIES OF GASES AND GAS MIXTURES:								
26	Introduction: P-V, P-T and T-S Diagrams for a Pure Substances;	1	T1 & T2	1. Application of steam properties				
	Mollier Diagram, Quality and Dryness	2	T1 & T2	in power plant.				
27	Fraction, use of Steam Tables for			2. Estimation of				
27	thermodynamic properties;			mass of steam				
				required for				
~~	Problem on finding steam properties	1	T1, T2 &	power plant. 3. Apply the ideal				
28	using steam table and mollier chart		R1,R2,R3	gas equation for				
				real time				
20	Thermodynamic relations: Gibbs and Helmholtz Functions, Maxwells relation	2	T1 & T2&R1	projects.				
29	and TDS equations.	2						
	Ideal gas: equation of state: Mole		T1 &					
30	Fraction, Mass friction Gravimetric and	1	T2,R1&R3					
50	volumetric Analysis;	-	12,101010					
	Dalton's Law of partial pressure: Mole							
31	fraction, Volume fraction and partial	1	T1 & T2&R1					
	pressure,							
	Equivalent Cas constant and Malecular			-				
	Equivalent Gas constant and Molecular Internal Energy, Enthalpy, specific Heats							
32	and Entropy of Mixture of perfect Gases	1	T1 & T2&R1					
52	and Vapour.	T						
			T4 TO 0					
22	Simple problems on mixture of gases for	n	T1, T2 &					
33	finding volumetric analysis, and mixture properties.	2	R1,R2,R3					
	Total periods required:	11						
	UNIT-V: GAS POWER CYCLES:							
<u> </u>	Air standard cycles: Stirling cycle;	1	T1, R1, & R2	1. Estimate the				
34		<u>-</u>	,, &	mean effective				
35	Ericsson cycle; Joule cycle;	1	T1, R1, & R2	pressure for otto				
55				=				

36	Atkinson cycle; Lenior cycle :	1	T1, R1, & R2	cycle, diesel cycle, and dual
37	Derivation for Otto cycle,;	1	T1, R1, & R2,R3	cycle. 2. Simple design and analysis of
38	Problems on otto cycle	1	T1, T2 & R1,R2,R3	otto, diesl and dual cyale.
39	Derivation for Diesel cycle	1	T1,R3	
40	Problems on diesel cycle	1	T1, T2 & R1,R2,R3	
41	Derivation for Dual cycle;	1	T1,R3	
42	Problems on dual cycle.	2	T1, T2 & R1,R2,R3	
43	Comparison of Otto, Diesel and Dual cycles.	1	T1,T2,R1,R3	
	Total periods required:		1	1
Grand total periods required:		45		

TEXT BOOKS:

T1. P. K. Nag, *Engineering Thermodynamics*, TMH, 5th Edition, 2013 T2. Chatttopadhyay, *Engineering Thermodynamics* Oxford 1st revised, 2011

REFERENCE BOOKS:

- R1. Yunus Cengel & Boles, Thermodynamics-An Engineering Approach, TMH, 8th Edition, 2015
- R2. J.P.Holman, *Thermodynamics*, McGrawHill, 2nd Edition 2004.
 R3. R.S.Khurmi, *Thermal engineering*, S.Chand publications, 15th Edition, 2015.

Note: Steam Tables with mollier diagram should be supplied during examination.