

(Autonomous) Sree Sainath Nagar, A. Rangampet-517 102

Department of Mechanical Engineering Lesson Plan

Name of the Subject	: Strength of Materials (14BT30301)			
Class & Semester	: II B.Tech - I Semester			
Name of the faculty Member	: XYZ			

1 2 3	UNIT – I: SIMPLE STR Elasticity and Plasticity, Types of stresses and strains Hooke's Law Stress – Strain diagram	ESSES AN	D STRAINS	
1 2 3	Elasticity and Plasticity, Types of stresses and strains Hooke's Law Stress – Strain diagram	1		D C
2 3	Hooke's Law Stress - Strain diagram		T1	Bars of tapering sections
3	working stress, Factor of safety	1	T1	
	Lateral strain, Poisson's ratio and volumetric strain	1	T1	
4	Elastic moduli and the relationship between them	1	T1 & T2	
5	Bars of varying section, Composite bars	2	T1 & T2	
6	Temperature stresses	1	T1 & R1	
7	Strain energy- Resilience – Gradual, sudden, impact and shock loadings	2	T1, T2, & R2	
8	Principal Stresses Mohr's circle	1	T1, R1, & R2	
I	Total periods required:	10		
	UNIT – II: SHEAR FORCE	AND BENI	DING MOMEN	Т
9	Concept of shear force and bending moment, Point of contra flexure	1	T1 & T2	Over hanging beams
10	S.F. and B.M. diagrams for cantilever beams subjected to point loads, uniformly distributed load, uniformly varying loads and combination of these loads	3	T1, T2 & R2	
11	S.F. and B.M. diagrams for simply supported beams subjected to point loads, uniformly distributed load, uniformly varying loads and combination of these loads	3	T1, T2 & R2	
12	Relation between S.F., B.M. and rate of loading at a section of a beam	1	T1	
	Total periods required:	08	1	1

UNIT-III: FLEXURAL STRESSES				
13	Theory of simple bending, Assumptions, Neutral axis, Bending equation	1	T1, T2 & R1	
14	Determination of bending stresses for simple cases-	2	T1, T2 & R1	
15	Section modulus of rectangular and circular sections (Solid and Hollow), I, T, Angle and Channel sections	2	T1, T2 & R1	
16	Shear stress formula	1	T1, T2 & R3	
17	Shear stress distribution across various beams & sections like rectangular, Circular, Triangular, I, T sections	2	T1, T2 & R3	
18	Theory of pure torsion, Torsion Equation	1	T1 & R2	
19	Assumptions made in the theory of pure torsion. Torsional moment of resistance	2	T1 & R2	
20	Polar section modulus and simple problems	2	T1,R1 & R2	
	Total periods required:	13		
	UNIT – IV: DEFLEO	CTION OF	BEAMS	
21	Relationship between curvature, slope and deflection	1	T1 & T2	
22	Double Integration method slope and deflection of cantilever and simply supported beams subjected to point loads, uniformly distributed load	2	T1 & T2	
23	Macaulay's method slope and deflection for cantilever and simply supported beams subjected to point loads, uniformly distributed load	2	T1 & T2	
24	Moment area method slope and deflection for cantilever and simply supported beams subjected to point loads, uniformly distributed load	2	T1 & T2	
	Total periods required:	07		
	UNIT – V: PRESS	SURE VES	SELS	
25	Thin seamless cylindrical shells	1	T1, R1, & R2	
26	Derivation of formula for longitudinal and circumferential stresses, volumetric strain	2	T1, R1, & R2	
27	Thin spherical shells	2	T1, R1, & R2	

28	Thick cylinders under internal and external pressure.	2	T1, R1, & R2	
	Total periods required:	07		
	Grand total periods required:	45		

Text Books:

- 1. Dr. B. C. Punmia, Ashok Kumar Jain, Arun Kumar Jain, Mechanics of Materials, Laxmi Publications, 1st edition,2009.
- 2. S.Ramamrutham, R.Narayanan, Strength of Materials, Dhanpat Rai Publications, 14th edition, 2011.

Reference Books:

- 1. James M.Gere, Stephen Timoshenko, Mechanics of Materials, CBS Publications, 2nd edition, 2004.
- 2. Beer, Johnston & Dewolf, Mechanics of Materials, Tata McGraw-Hill Education

 3^{rd} edition, 2004.

3. S.S Rattan, Strength of materials, Tata McGraw Hill Publications, 2nd edition, 2011.